Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit

A number of new functionalities have been added to the Alloy Theoretic Automated Toolkit (ATAT) since it was last reviewed in this journal in 2002. ATAT can now handle multicomponent multisublattice alloy systems, nonconfigurational sources of entropy (e.g. vibrational and electronic entropy), Special Quasirandom Structures (SQS) generation, tensorial cluster expansion construction and includes interfaces for multiple atomistic or ab initio codes. This paper presents an overview of these features geared towards the practical use of the code. The extensions to the cluster expansion formalism needed to cover multicomponent multisublattice alloys are also formally demonstrated.

[1]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[2]  Jefferson Z. Liu,et al.  Transferable force-constant modeling of vibrational thermodynamic properties in fcc-based Al-TM (TM=Ti, Zr, Hf) alloys , 2007 .

[3]  A. V. D. Walle,et al.  A complete representation of structure-property relationships in crystals. , 2008 .

[4]  M. Asta,et al.  First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al–TM (TM = Ti, Zr and Hf) systems: A comparison of cluster expansion and supercell methods , 2008 .

[5]  R. Benedek,et al.  Free Energy for Protonation Reaction in Lithium-Ion Battery Cathode Materials , 2008 .

[6]  Allan,et al.  Dielectric tensor, effective charges, and phonons in alpha -quartz by variational density-functional perturbation theory. , 1992, Physical review letters.

[7]  Stefano de Gironcoli Lattice dynamics of metals from density-functional perturbation theory. , 1995, Physical review. B, Condensed matter.

[8]  Igor A. Abrikosov,et al.  Locally self-consistent Green's function approach to the electronic structure problem , 1997 .

[9]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[10]  R. Benedek,et al.  Free Energies for Acid Attack Reactions of Lithium Cobaltate , 2008 .

[11]  A. van de Walle,et al.  Automating First-Principles Phase Diagram Calculations , 2002 .

[12]  U. Kattner,et al.  First principles phase diagram calculations for the wurtzite-structure systems AlN–GaN, GaN–InN, and AlN–InN , 2006 .

[13]  Ceder,et al.  Model for configurational thermodynamics in ionic systems. , 1995, Physical review letters.

[14]  I. Ansara,et al.  Al-Mg COST 507 Thermochemical database for light metal alloys , 1998 .

[15]  W. Gasior,et al.  First-Principles Calculation of the Cu-Li Phase Diagram , 2004 .

[16]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[17]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[18]  A. Zunger,et al.  Short-range order types in binary alloys: A reflection of coherent phase stability , 1999 .

[19]  Ceder,et al.  Contribution of the vibrational free energy to phase stability in substitutional alloys: Methods and trends. , 1996, Physical review. B, Condensed matter.

[20]  A. van de Walle,et al.  Institute of Physics Publishing Modelling and Simulation in Materials Science and Engineering Self-driven Lattice-model Monte Carlo Simulations of Alloy Thermodynamic Properties and Phase Diagrams , 2002 .

[21]  G. Ceder,et al.  Vibrational thermodynamics: coupling of chemical order and size effects , 2000 .

[22]  M. Asta,et al.  First-Principles Phase Stability Calculations of Pseudobinary Alloys of (Al,Zn)3Ti with L12, D022, and D023 Structures , 2007 .

[23]  Gerbrand Ceder,et al.  First-principles alloy theory in oxides , 2000 .

[24]  Raymundo Arroyave,et al.  Open source software for materials and process modeling , 2008 .

[25]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[26]  Testa,et al.  Green's-function approach to linear response in solids. , 1987, Physical review letters.

[27]  Zi-kui Liu,et al.  First-principles calculations of the Zn–Zr system , 2006 .

[28]  A. van de Walle,et al.  The effect of lattice vibrations on substitutional alloy thermodynamics , 2001, cond-mat/0106490.

[29]  F. Ducastelle Order and Phase Stability in Alloys , 1991 .

[30]  Wei,et al.  Ab initio calculation of force constants and full phonon dispersions. , 1992, Physical review letters.

[31]  Axel van de Walle,et al.  Thermodynamic properties of binary hcp solution phases from special quasirandom structures , 2006, 0708.3995.

[32]  A. Zunger Spontaneous Atomic Ordering in Semiconductor Alloys: Causes, Carriers, and Consequences , 1997 .

[33]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[34]  V. Ozoliņš,et al.  A first-principles approach to modeling alloy phase equilibria , 2001 .

[35]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[36]  S deGironcoli,et al.  Lattice dynamics of metals from density-functional perturbation theory. , 1995 .

[37]  D. Ellis,et al.  First-principles thermodynamics of coherent interfaces in samarium-doped ceria nanoscale superlattices. , 2007, Physical review letters.

[38]  K. Ishida,et al.  Phase equilibria in the Fe-Co binary system , 2002 .

[39]  A. van de Walle,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002 .

[40]  Alex Zunger,et al.  First-Principles Statistical Mechanics of Semiconductor Alloys and Intermetallic Compounds , 1994 .

[41]  G. Ceder A derivation of the Ising model for the computation of phase diagrams , 1993 .

[42]  Axel van de Walle,et al.  First-principles phase diagram calculations for the system NaCl–KCl: The role of excess vibrational entropy , 2006 .

[43]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[44]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[45]  D. Fontaine Cluster Approach to Order-Disorder Transformations in Alloys , 1994 .

[46]  Yi Wang,et al.  First-principles study of ternary fcc solution phases from special quasirandom structures , 2007, 0709.2302.

[47]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[48]  A. van de Walle,et al.  First-principles computation of the vibrational entropy of ordered and disordered Pd 3 V , 2000 .

[49]  Gerbrand Ceder,et al.  First-Principles Computation of the Vibrational Entropy of Ordered and Disordered Ni3Al , 1998 .

[50]  Stefano de Gironcoli,et al.  Ab initio calculation of phonon dispersions in semiconductors. , 1991, Physical review. B, Condensed matter.