A comparative study of different approaches using an outranking relation in a multi-objective evolutionary algorithm

This paper presents a comparative analysis of three versions of an evolutionary algorithm in which the decision maker's preferences are incorporated using an outranking relation and preference parameters associated with the ELECTRE TRI method. The aim is using the preference information supplied by the decision maker to guide the search process to the regions where solutions more in accordance with his/her preferences are located, thus narrowing the scope of the search and reducing the computational effort. An example dealing with a pertinent problem in electrical distribution network is used to compare the different versions of the algorithm and illustrate how meaningful information can be elicited from a decision maker and used in the operational framework of an evolutionary algorithm to provide decision support in real-world problems.

[1]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[2]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[3]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[4]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[5]  Soon-Thiam Khu,et al.  An Investigation on Preference Order Ranking Scheme for Multiobjective Evolutionary Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[6]  Yaochu Jin,et al.  Knowledge incorporation in evolutionary computation , 2005 .

[7]  M. Farina,et al.  On the optimal solution definition for many-criteria optimization problems , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[8]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[9]  K. Deb Solving goal programming problems using multi-objective genetic algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[10]  Jürgen Branke,et al.  Consideration of Partial User Preferences in Evolutionary Multiobjective Optimization , 2008, Multiobjective Optimization.

[11]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[12]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[13]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[14]  Lily Rachmawati,et al.  Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[15]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[16]  David W. Corne,et al.  Techniques for highly multiobjective optimisation: some nondominated points are better than others , 2007, GECCO '07.

[17]  J. Branke,et al.  Interactive evolutionary multiobjective optimization driven by robust ordinal regression , 2010 .

[18]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[19]  Kim Fung Man,et al.  Multiobjective Optimization , 2011, IEEE Microwave Magazine.

[20]  B. Roy THE OUTRANKING APPROACH AND THE FOUNDATIONS OF ELECTRE METHODS , 1991 .

[21]  Khaled Ghédira,et al.  The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.

[22]  Lily Rachmawati,et al.  Multiobjective Evolutionary Algorithm With Controllable Focus on the Knees of the Pareto Front , 2009, IEEE Transactions on Evolutionary Computation.

[23]  Jürgen Branke,et al.  Interactive Multiobjective Evolutionary Algorithms , 2008, Multiobjective Optimization.

[24]  Bernhard Sendhoff,et al.  Incorporation Of Fuzzy Preferences Into Evolutionary Multiobjective Optimization , 2002, GECCO.

[25]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[26]  Carlos Henggeler Antunes,et al.  An Evolutionary Algorithm based on an outranking relation for sorting problems , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[27]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[28]  Álvaro Gomes,et al.  A multi-objective evolutionary algorithm for reactive power compensation in distribution networks , 2009 .

[29]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[30]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization using an outranking-based dominance generalization , 2010, Comput. Oper. Res..

[31]  Álvaro Gomes,et al.  Incorporation of Preferences in an Evolutionary Algorithm Using an Outranking Relation: The EvABOR Approach , 2011, Int. J. Nat. Comput. Res..

[32]  David W. Corne,et al.  Quantifying the Effects of Objective Space Dimension in Evolutionary Multiobjective Optimization , 2007, EMO.

[33]  Carlos A. Coello Coello,et al.  Ranking Methods for Many-Objective Optimization , 2009, MICAI.

[34]  Vincent Mousseau,et al.  A user-oriented implementation of the ELECTRE-TRI method integrating preference elicitation support , 2000, Comput. Oper. Res..

[35]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.