Insight-HXMT Observations of 4U 1636-536: Corona Cooling Revealed with Single Short Type-I X-Ray Burst

Corona cooling was detected previously from stacking a series of short type I bursts that occurred during the low/hard state of an atoll outburst. Type I bursts are hence regarded as sharp probes used to better our understanding of the basic properties of the corona. The first Chinese X-ray satellite, Insight-HXMT, has a large detection area at hard X-rays that provides a unique opportunity to move further in this research field. We report the first detection of corona cooling by Insight-HXMT from a single short type I burst appearing during the flare of 4U 1636-536. This type I X-ray burst has a duration of similar to 13 s and hard X-ray shortage is detected with a significance of 6.2 sigma in 40-70 keV. A cross-correlation analysis between the light curves of the soft and hard X-ray band shows that the corona shortage lags the burst emission by 1.6 +/- 1.2 s. These results are consistent with those derived previously from stacking a large amount of bursts detected by RXTE/PCA within a series of flares of 4U 1636-536. Moreover, the broad bandwidth of Insight-HXMT also allows, for the first time, one to infer the burst influence upon the continuum spectrum via performing the spectral fitting of the burst, which points to the finding that hard X-ray shortage appears at around 40 keV in the continuum spectrum. These results suggest that the evolution of the corona, along with the outburst/flare of NS XRB, may be traced via analyzing a series of embedded type I bursts using Insight-HXMT.

C. Z. Liu | J. Y. Liao | X. B. Li | Y. N. Liu | Y. J. Yang | Y. S. Wang | C. M. Zhang | J. K. Deng | Y. Zhang | A. M. Zhang | G. F. Wang | W. Cui | B. B. Wu | S. N. Zhang | Y. F. Zhang | H. Xu | Y. Huang | M. Wu | W. Li | G. Q. Liu | J. Zhang | Yehui Zhang | L. Chen | G. Liu | X. Cao | H. Liu | T. Zhang | X. Zhao | Z. Li | Y. Wang | S. Liu | W. Zhang | L. Sun | Y. Chen | X. Wen | X. Lu | X. Liu | T. P. Li | J. Wang | C. Zhang | Y. Huang | J. Yang | L. L. Yan | S. Zhang | T. Zhang | T. Luo | B. Wu | G. Xiao | T. Chen | J. Deng | L. Sun | G. Chen | J. Guan | G. Li | H. W. Liu | H. S. Zhao | W. C. Zhang | L. Tao | Y. J. Zhang | W. Hu | L. Tao | G. Chen | M. Ge | W. Zhang | F. J. Lu | L. Chen | M. Gao | H. Y. Wang | W. Z. Zhang | X. F. Zhao | Z. W. Li | L. Song | S. Zhang | S. Z. Liu | J. Jin | A. Zhang | B. Lu | L. Ji | H. Zhang | B. Li | W. Wang | W. Cui | M. Li | D. Han | J. Huo | G. Li | S. Yang | X. H. Liang | X. Y. Wen | X. F. Lu | Z. Chang | Y. J. Jin | M. X. Fu | Y. P. Xu | Y. W. Dong | S. L. Xiong | F. Zhang | H. Gao | G. Ou | Y. Chen | Z. Chang | Y. Tuo | Y. Xu | C. Liu | M. Fu | G. Gao | Y. Gu | J. Guan | C. Guo | S. Jia | L. Jiang | L. Kong | C. K. Li | X. Li | X. Liang | J. Liao | X. Ma | B. Meng | Y. Nang | J. Nie | G. Ou | N. Sai | G. Wang | M. Wu | Y. Zhu | W. W. Cui | D. W. Han | M. S. Li | S. J. Zheng | Y. G. Li | Y. P. Chen | L. D. Kong | X. L. Cao | T. X. Chen | Y. Chen | Y. B. Chen | Y. Y. Du | G. H. Gao | M. Y. Ge | Y. D. Gu | C. C. Guo | J. Huo | S. M. Jia | L. H. Jiang | W. C. Jiang | X. Li | X. F. Li | Z. J. Li | X. J. Liu | Y. Liu | Y. N. Liu | X. Ma | B. Meng | Y. Nang | J. Y. Nie | J. L. Qu | N. Sai | L. M. Song | Y. Tan | W. H. Tao | Y. L. Tuo | J. Wang | W. S. Wang | G. C. Xiao | J. W. Yang | C. L. Zhang | H. M. hang | J. Zhang | Q. Zhang | W. Zhang | Z. Zhang | Z. L. Zhang | J. L. Zhao | Y. Zhu | Y. X. Zhu | C. L. Zou | Y. J. Jin | Q. Zhang | Y. Tan | J. Qu | B. Li | T. Luo | S. Xiong | W. Li | F. Lu | L. Ji | Hengyuan Zhao | J. Jin | W. Jiang | M. Gao | X. Li | B. Lu | H. Xu | S. Yang | C. M. Zhang | W. Zhang | Z. Zhang | S. Zheng | W. Hu | W. Tao | J. Zhao | C. Zou | L. Yan | Y. Liu | Y. Zhang | Y. Dong | H. Y. Wang | T. Li | Y. Li | Z. Li | H. Gao | Y. Du | F. Zhang | B. Wu | S. Zhang | Y. Huang | X. Liang | X. Cao | Y. Gu

[1]  Jian Li,et al.  TYPE-I X-RAY BURSTS REVEAL A FAST CO-EVOLVING BEHAVIOR OF THE CORONA IN AN X-RAY BINARY , 2012, 1304.5370.

[2]  P. Kretschmar,et al.  Possible hard X-ray shortages in bursts from KS 1731-260 and 4U 1705-44 , 2014, 1402.3802.

[3]  Walter H. G. Lewin,et al.  X-ray bursts , 1993 .

[4]  P. Kretschmar,et al.  THE HARD X-RAY BEHAVIOR OF AQL X-1 DURING TYPE-I BURSTS , 2013, 1309.6380.

[5]  F. J. Lu,et al.  Introduction to the hard x-ray modulation telescope , 2014, Astronomical Telescopes and Instrumentation.

[6]  J. Grindlay,et al.  Persistent emission and bursts from Aquila X-1 observed by Einstein , 1987 .

[7]  J. Poutanen,et al.  X-ray bursting neutron star atmosphere models: spectra and color corrections , 2011 .

[8]  P. Kretschmar,et al.  A STATE-DEPENDENT INFLUENCE OF TYPE I BURSTS ON THE ACCRETION IN 4U 1608–52? , 2014, 1407.6235.

[9]  Daniel J. Price,et al.  EVIDENCE FOR ACCRETION RATE CHANGE DURING TYPE I X-RAY BURSTS , 2013, 1303.4824.

[10]  D. Psaltis,et al.  Thermonuclear (Type I) X-Ray Bursts Observed by the Rossi X-Ray Timing Explorer , 2006, astro-ph/0608259.

[11]  N. St-Louis REVEALING THE ASYMMETRY OF THE WIND OF THE VARIABLE WOLF–RAYET STAR WR1 (HD 4004) THROUGH SPECTROPOLARIZATION , 2013, 1308.5914.

[12]  D. Torres,et al.  Type-I bursts within outbursts of IGR J17473-2721 , 2010, 1002.1044.

[13]  D. Altamirano,et al.  The cooling phase of Type I X-ray bursts in 4U 1636-53 , 2010, 1010.2533.

[14]  L. Bildsten,et al.  New Views of Thermonuclear Bursts , 2003, astro-ph/0301544.

[15]  Thomas J. MaccaronePaolo S. Coppi Spectral fits to the 1999 Aql X-1 outburst data , 2003 .

[16]  Yu Wang,et al.  The Kilohertz QPO Frequency and Flux Decrease in Aquila X-1 and the Effect of Soft X-Ray Spectral Components , 1998, astro-ph/9812386.

[17]  N. Gehrels,et al.  INVESTIGATING SLIM DISK SOLUTIONS FOR HLX-1 IN ESO 243-49 , 2012, 1204.3461.

[18]  T. Maccarone,et al.  Accretion Disks and Coronae in the X-Ray Flashlight , 2017, 1711.06272.

[19]  Ucla,et al.  Eddington-limited X-Ray Bursts as Distance Indicators. II. Possible Compositional Effects in Bursts from 4U 1636–536 , 2005, astro-ph/0511380.

[20]  J. Poutanen,et al.  X-ray burst-induced spectral variability in 4U 1728-34 , 2016, 1611.03976.

[21]  J. Everett,et al.  On the Dynamics of Suddenly Heated Accretion Disks around Neutron Stars , 2005, astro-ph/0502463.

[22]  D. R. Ballantyne,et al.  The Evolution of the Accretion Disk around 4U 1820–30 during a Superburst , 2004, astro-ph/0401154.

[23]  Thermonuclear X-ray bursts: theory vs. observations , 2003, astro-ph/0309626.

[24]  D. Palmer,et al.  A bright thermonuclear X-ray burst simultaneously observed with Chandra and RXTE , 2013, 1301.2232.

[25]  J. Olive,et al.  Probing X-ray burst - accretion disk interaction in low mass X-ray binaries through kilohertz quasiperiodic oscillations , 2014, 1403.5471.

[26]  L. Keek,et al.  X-RAYING AN ACCRETION DISK IN REALTIME: THE EVOLUTION OF IONIZED REFLECTION DURING A SUPERBURST FROM 4U 1636–536 , 2014, 1410.5434.

[27]  P. Kretschmar,et al.  X-ray bursts as a probe of the corona: the case of XRB 4U 1636−536 , 2013, 1304.5371.

[28]  M. Oguri,et al.  Size–Luminosity Relations and UV Luminosity Functions at z = 6–9 Simultaneously Derived from the Complete Hubble Frontier Fields Data , 2017, 1710.07301.

[29]  C. B. Markwardt,et al.  NICER Observes the Effects of an X-Ray Burst on the Accretion Environment in Aql X-1 , 2018, 1808.06441.