Pricing Options on Realized Variance in the Heston Model with Jumps in Returns and Volatility

We develop analytical methodology for pricing and hedging options on the realized variance under the Heston stochastic variance model (1993) augmented with jumps in asset returns and variance. By employing generalized Fourier transform we obtain analytical solutions (up to numerical inversion of Fourier integral) for swaps on the realized volatility and variance and for options on these swaps. We also extend our framework for pricing forward-start options on the realized variance and volatility, including options on the VIX. Our methodology allows us to consistently unify pricing and risk managing of different volatility options. We provide an example of model parameters estimation using both time series of the VIX and the VIX options data and find that the proposed model is in agreement with both historical and implied market data. Finally, we derive a log-normal approximation to the density of the realized variance in the Heston model and obtain accurate approximate solution for volatility options with longer maturities.

[1]  Claudio Albanese,et al.  Spectral methods for volatility derivatives , 2009, 0905.2091.

[2]  Peter Carr,et al.  Variance Risk Premiums , 2009 .

[3]  Leif Andersen Simple and efficient simulation of the Heston stochastic volatility model , 2008 .

[4]  Artur Sepp VIX Option Pricing in a Jump-Diffusion Model , 2008 .

[5]  Dimitris Psychoyios,et al.  An empirical comparison of continuous-time models of implied volatility indices , 2007 .

[6]  M. C. Recchioni,et al.  Pricing realized variance options using integrated stochastic variance options in the Heston stochastic volatility model , 2007 .

[7]  Artur Sepp AFFINE MODELS IN MATHEMATICAL FINANCE: AN ANALYTICAL APPROACH , 2007 .

[8]  Robert J. Elliott,et al.  Pricing Volatility Swaps Under Heston's Stochastic Volatility Model with Regime Switching , 2007 .

[9]  Mark Broadie,et al.  Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes , 2006, Oper. Res..

[10]  J. Andreasen Stochastic Volatility for Real , 2006 .

[11]  Hans Buehler,et al.  Consistent Variance Curve Models , 2006, Finance Stochastics.

[12]  Peter Forsyth,et al.  Pricing methods and hedging strategies for volatility derivatives , 2006 .

[13]  Jim Gatheral,et al.  Valuation of volatility derivatives as an inverse problem , 2005 .

[14]  Michael S. Johannes,et al.  Model Specification and Risk Premia: Evidence from Futures Options , 2005 .

[15]  Jin E. Zhang,et al.  Variance Term Structure and VIX Futures Pricing , 2005 .

[16]  Marc Yor,et al.  Pricing options on realized variance , 2005, Finance Stochastics.

[17]  S. Howison,et al.  On the pricing and hedging of volatility derivatives , 2004 .

[18]  Paul Wilmott,et al.  GARCH and volatility swaps , 2004 .

[19]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[20]  Artur Sepp,et al.  Pricing European-Style Options under Jump Diffusion Processes with Stochastic Volatility: Applications of Fourier Transform , 2003, Acta et Commentationes Universitatis Tartuensis de Mathematica.

[21]  V. Yakovenko,et al.  Probability distribution of returns in the Heston model with stochastic volatility , 2002, cond-mat/0203046.

[22]  T. Little,et al.  A FINITE DIFFERENCE METHOD FOR THE VALUATION OF VARIANCE SWAPS , 2001 .

[23]  Alexander Lipton,et al.  Mathematical Methods for Foreign Exchange: A Financial Engineer's Approach , 2001 .

[24]  Alan L. Lewis A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .

[25]  Louis O. Scott Pricing Stock Options in a Jump‐Diffusion Model with Stochastic Volatility and Interest Rates: Applications of Fourier Inversion Methods , 1997 .

[26]  F. Longstaff,et al.  Valuing Futures and Options on Volatility , 1996 .

[27]  A. Neuberger,et al.  The Log Contract , 1994 .

[28]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[29]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[30]  Roger Lee,et al.  Realized Volatility and Variance: Options via Swaps , 2007 .

[31]  G. Skiadopoulos,et al.  Volatility options: Hedging effectiveness, pricing, and model error , 2006 .

[32]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[33]  Leif Andersen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .

[34]  Alan L. Lewis Option Valuation under Stochastic Volatility , 2000 .

[35]  K. Demeterfi,et al.  More than You ever Wanted to Know about Volatility Swaps , 1999 .

[36]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[37]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[38]  Bruno Dupire Pricing with a Smile , 1994 .

[39]  F. Black The pricing of commodity contracts , 1976 .

[40]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .