THE HETDEX PILOT SURVEY. III. THE LOW METALLICITIES OF HIGH-REDSHIFT Lyα GALAXIES

We present the results of Keck/NIRSPEC spectroscopic observations of three Lyα emitting galaxies (LAEs) at z∼ 2.3 discovered with the HETDEX pilot survey. We detect Hα, [O iii], and Hβ emission from two galaxies at z= 2.29 and 2.49, designated HPS194 and HPS256, respectively, representing the first detection of multiple rest-frame optical emission lines in galaxies at high redshift selected on the basis of their Lyα emission. We find that the redshifts of the Lyα emission from these galaxies are offset redward of the systemic redshifts (derived from the Hα and [O iii] emission) by Δv = 162 ± 37 (photometric) ± 42 (systematic) km s−1 for HPS194 and Δv = 36 ± 35 ± 18 km s−1 for HPS256. An interpretation for HPS194 is that a large-scale outflow may be occurring in its interstellar medium. This outflow is likely powered by star-formation activity, as examining emission line ratios implies that neither LAE hosts an active galactic nucleus. Using the upper limits on the [N ii] emission, we place meaningful constraints on the gas-phase metallicities in these two LAEs of Z< 0.17 and < 0.28 Z☉ (1σ). Measuring the stellar masses of these objects via spectral energy distribution (SED) fitting (∼1010 and 6 × 108 M☉, respectively), we study the nature of LAEs in a mass–metallicity plane. At least one of these two LAEs appears to be more metal poor than continuum-selected star-forming galaxies at the same redshift and stellar mass, implying that objects exhibiting Lyα emission may be systematically less chemically enriched than the general galaxy population. We use the SEDs of these two galaxies to show that neglecting the contribution of the measured emission line fluxes when fitting stellar population models to the observed photometry can result in overestimates of the population age by orders of magnitude and the stellar mass by a factor of ∼2. This effect is particularly important at z≳ 7, where similarly strong emission lines may masquerade in the photometry as a 4000 Å break.

[1]  K. Shimasaku,et al.  STELLAR POPULATIONS OF Lyα EMITTERS AT z = 4.86: A COMPARISON TO z ∼ 5 LYMAN BREAK GALAXIES , 2010 .

[2]  K. Shimasaku,et al.  STELLAR POPULATIONS OF Lyα EMITTERS AT z = 4.86: A COMPARISON TO z ∼ 5 LYMAN BREAK GALAXIES , 2010, 1007.2057.

[3]  C. Steidel,et al.  PHYSICAL CONDITIONS IN A YOUNG, UNREDDENED, LOW-METALLICITY GALAXY AT HIGH REDSHIFT , 2010, 1006.5456.

[4]  S. Okamura,et al.  STELLAR POPULATIONS OF Lyα EMITTERS AT z ∼ 6–7: CONSTRAINTS ON THE ESCAPE FRACTION OF IONIZING PHOTONS FROM GALAXY BUILDING BLOCKS , 2010, 1004.0963.

[5]  C. Steidel,et al.  THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z ≃ 2–3 GALAXIES , 2010, 1003.0679.

[6]  C. Leitherer,et al.  Escape of about five per cent of Lyman-α photons from high-redshift star-forming galaxies , 2010, Nature.

[7]  H. Ferguson,et al.  ON THE STELLAR POPULATIONS AND EVOLUTION OF STAR-FORMING GALAXIES AT 6.3 < z ⩽ 8.6 , 2009, 0912.1338.

[8]  S. Okamura,et al.  Stellar populations of Lyα emitters at z= 3–4 based on deep large area surveys in the Subaru-SXDS/UKIDSS-UDS Field , 2009, 0911.2544.

[9]  Institute for Advanced Study,et al.  RADIATIVE TRANSFER MODELING OF Lyα EMITTERS. I. STATISTICS OF SPECTRA AND LUMINOSITY , 2009, 0910.2712.

[10]  S. Virani,et al.  Lyα-EMITTING GALAXIES AT z = 2.1 IN ECDF-S: BUILDING BLOCKS OF TYPICAL PRESENT-DAY GALAXIES? , 2009, 0910.2244.

[11]  L. Cowie,et al.  LOW-REDSHIFT Lyα SELECTED GALAXIES FROM GALEX SPECTROSCOPY: A COMPARISON WITH BOTH UV-CONTINUUM SELECTED GALAXIES AND HIGH-REDSHIFT Lyα EMITTERS,, , 2009, 0909.0031.

[12]  Ulrich Hopp,et al.  THE HETDEX PILOT SURVEY. I. SURVEY DESIGN, PERFORMANCE, AND CATALOG OF EMISSION-LINE GALAXIES , 2010 .

[13]  F. Civano,et al.  THE CHANDRA SURVEY OF THE COSMOS FIELD. II. SOURCE DETECTION AND PHOTOMETRY , 2009, 0910.2617.

[14]  M. Franx,et al.  ULTRADEEP INFRARED ARRAY CAMERA OBSERVATIONS OF SUB-L* z ∼ 7 AND z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD: THE CONTRIBUTION OF LOW-LUMINOSITY GALAXIES TO THE STELLAR MASS DENSITY AND REIONIZATION , 2009, 0910.0838.

[15]  A. Rau,et al.  THE EFFECT OF DUST GEOMETRY ON THE Lyα OUTPUT OF GALAXIES , 2009, 0909.3847.

[16]  Marijn Franx,et al.  THE STELLAR MASS DENSITY AND SPECIFIC STAR FORMATION RATE OF THE UNIVERSE AT z ∼ 7 , 2009, 0909.3517.

[17]  R. Bouwens,et al.  STELLAR MASSES OF LYMAN BREAK GALAXIES, Lyα EMITTERS, AND RADIO GALAXIES IN OVERDENSE REGIONS AT z = 4–6 , 2009, 0909.1082.

[18]  S. M. Fall,et al.  LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.

[19]  D. Tucker,et al.  REST-FRAME OPTICAL SPECTRA OF THREE STRONGLY LENSED GALAXIES AT z ∼ 2 , 2009, 0906.2197.

[20]  Marcia J. Rieke,et al.  TURNING BACK THE CLOCK: INFERRING THE HISTORY OF THE EIGHT O'CLOCK ARC , 2009, 0905.1122.

[21]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[22]  K. Bundy,et al.  THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION , 2009, 0902.2907.

[23]  Eso - Garching,et al.  Evolution in the properties of Lyman-α emitters from redshifts z ~ 3 to z ~ 2 , 2008, 0812.3152.

[24]  A. Fontana,et al.  The physical properties of Lyα emitting galaxies: not just primeval galaxies? , 2008, 0811.1861.

[25]  S. Finkelstein,et al.  LYMAN ALPHA GALAXIES: PRIMITIVE, DUSTY, OR EVOLVED? , 2008, 0806.3269.

[26]  C. Leitherer,et al.  THE LYMAN ALPHA MORPHOLOGY OF LOCAL STARBURST GALAXIES: RELEASE OF CALIBRATED IMAGES , 2008, 0803.1174.

[27]  S. Finkelstein,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 04/20/08 EVOLUTION OF LYMAN ALPHA GALAXIES: STELLAR POPULATIONS AT Z ∼ 0.3 , 2022 .

[28]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[29]  A. Loeb,et al.  Lyα-driven outflows around star-forming galaxies , 2008, 0807.2645.

[30]  Andreas Kelz,et al.  Design, construction, and performance of VIRUS-P: the prototype of a highly replicated integral-field spectrograph for HET , 2008, Astronomical Telescopes + Instrumentation.

[31]  G. Rieke,et al.  Spitzer’s Contribution to the AGN Population , 2008, 0806.4610.

[32]  D. Schaerer,et al.  3D Lyα radiation transfer III. Constraints on gas and stellar properties of z ∼ 3 Lyman break galaxies (LBG) and implications for high-z LBGs and Lyα emitters , 2008, 0805.3601.

[33]  Observatoire de Geneve,et al.  On the Detectability of Lyman-alpha Emission in Star-forming Galaxies: The Role of Dust , 2008, 0805.3501.

[34]  J. Brinchmann,et al.  Metallicities and Physical Conditions in Star-forming Galaxies at z ~ 1.0-1.5 , 2008, 0801.1670.

[35]  Leiden,et al.  New insights into the stellar content and physical conditions of star-forming galaxies at z = 2-3 from spectral modelling , 2008, 0801.1678.

[36]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[37]  E. Gawiser,et al.  Spitzer Constraints on the Stellar Populations of Lyα-Emitting Galaxies at z = 3.1 , 2007, 0710.3384.

[38]  K. Schawinski,et al.  Lyα-Emitting Galaxies at z = 3.1: L* Progenitors Experiencing Rapid Star Formation , 2007, 0710.2697.

[39]  H. Tananbaum,et al.  The Luminosity Function of X-Ray-selected Active Galactic Nuclei: Evolution of Supermassive Black Holes at High Redshift , 2007, 0710.2461.

[40]  S. Finkelstein,et al.  Effects of Dust Geometry in Lyα Galaxies at z = 4.4 , 2007, 0708.4226.

[41]  L. Infante,et al.  Lyα Emission-Line Galaxies at z = 3.1 in the Extended Chandra Deep Field-South , 2007, 0705.3917.

[42]  S. Finkelstein,et al.  The Ages and Masses of Lyα Galaxies at z ~ 4.5 , 2007 .

[43]  M. Lacy,et al.  The stellar mass density at z ~6 from Spitzer imaging of i'-drop galaxies , 2006, astro-ph/0607306.

[44]  J. Rhoads,et al.  Optical-to-Mid-Infrared Observations of Lyα Galaxies at z ≈ 5 in the Hubble Ultra Deep Field: A Young and Low-Mass Population , 2007 .

[45]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[46]  Jia-Sheng Huang,et al.  The Stellar Population of Lyα-emitting Galaxies at z ~ 5.7 , 2006, astro-ph/0610572.

[47]  Max Pettini,et al.  A Spectroscopic Survey of Redshift 1.4 ≲ z ≲ 3.0 Galaxies in the GOODS-North Field: Survey Description, Catalogs, and Properties , 2006, astro-ph/0609296.

[48]  Monteporzio,et al.  The Galaxy Mass Function up to z=4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies ⋆ , 2006, astro-ph/0609068.

[49]  C. Conselice,et al.  AEGIS: Infrared Spectroscopy of an Infrared-luminous Lyman Break Galaxy at z = 3.01 , 2006, astro-ph/0608456.

[50]  The Stellar Masses and Star Formation Histories of Galaxies at z ≈ 6: Constraints from Spitzer Observations in the Great Observatories Origins Deep Survey , 2006, astro-ph/0604554.

[51]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[52]  K. Schawinski,et al.  The Physical Nature of Lyα-emitting Galaxies at z = 3.1 , 2006, astro-ph/0603244.

[53]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[54]  C. Conselice,et al.  Rest-Frame Ultraviolet-to-Optical Properties of Galaxies at z ≈ 6 and z ≈ 5 in the Hubble Ultra Deep Field: From Hubble to Spitzer , 2005, astro-ph/0507673.

[55]  S. Oh,et al.  Lyman α radiative transfer in a multiphase medium , 2005, astro-ph/0507586.

[56]  Institute for Astronomy,et al.  Outflows in Infrared-Luminous Starbursts at z < 0.5. II. Analysis and Discussion , 2005, astro-ph/0506611.

[57]  Jia-Sheng Huang,et al.  Ultraviolet to Mid-Infrared Observations of Star-forming Galaxies at z ~ 2: Stellar Masses and Stellar Populations , 2005, astro-ph/0503485.

[58]  Cambridge,et al.  Spitzer imaging of i′‐drop galaxies: old stars at z≈ 6 , 2005, astro-ph/0502385.

[59]  C. Martin Mapping Large-Scale Gaseous Outflows in Ultraluminous Galaxies with Keck II ESI Spectra: Variations in Outflow Velocity with Galactic Mass , 2004, astro-ph/0410247.

[60]  Arjun Dey,et al.  Submitted to the Astrophysical Journal Letters Mid-Infrared Selection of Active Galaxies , 2004 .

[61]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[62]  H. Spinrad,et al.  X-Ray Nondetection of the Lyα Emitters at z ~ 4.5 , 2004, astro-ph/0404611.

[63]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[64]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[65]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[66]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[67]  J. Brinkmann,et al.  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[68]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[69]  Mauro Giavalisco,et al.  Lyman-Break Galaxies , 2002 .

[70]  Mark Dickinson,et al.  The Great Observatories Origins Deep Survey , 2002, astro-ph/0204213.

[71]  Cambridge,et al.  An empirical calibration of star formation rate estimators , 2001, astro-ph/0112556.

[72]  C. Steidel,et al.  New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512–cB58 , 2001, astro-ph/0110637.

[73]  Hee-Won Lee,et al.  P-Cygni type Ly α in Starburst galaxies , 2001, astro-ph/0204004.

[74]  P. Dokkum,et al.  Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[75]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[76]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[77]  H. Ferguson,et al.  The Stellar Populations and Evolution of Lyman Break Galaxies , 2000, astro-ph/0105087.

[78]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[79]  P. Storey,et al.  Theoretical values for the [O iii] 5007/4959 line-intensity ratio and homologous cases , 2000 .

[80]  H. Spinrad,et al.  First Results from the Large-Area Lyman Alpha Survey , 1999, astro-ph/0003465.

[81]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[82]  H. Kobulnicky,et al.  On Measuring Nebular Chemical Abundances in Distant Galaxies Using Global Emission-Line Spectra , 1998, astro-ph/9811006.

[83]  James E. Larkin,et al.  Design and development of NIRSPEC: a near-infrared echelle spectrograph for the Keck II telescope , 1998, Astronomical Telescopes and Instrumentation.

[84]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[85]  L. Cowie,et al.  High-z Lyα Emitters. I. A Blank-Field Search for Objects near Redshift z = 3.4 in and around the Hubble Deep Field and the Hawaii Deep Field SSA 22 , 1998, astro-ph/9801003.

[86]  H. Yee,et al.  Optical-Infrared Spectral Energy Distributions of z > 2 Lyman Break Galaxies , 1997, astro-ph/9712216.

[87]  M. Malkan,et al.  A Young Cluster of Galaxies at z = 2.5 , 1996 .

[88]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[89]  Donald Hamilton,et al.  Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies , 1993 .

[90]  Robert L. Kurucz,et al.  SYNTHE Spectrum Synthesis Programs and Line Data. , 1993 .

[91]  D. Neufeld The Escape of Lyman-Alpha Radiation from a Multiphase Interstellar Medium , 1991 .

[92]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[93]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[94]  P. Osmer Evidence for a decrease in the space density of quasars at Z more than about 3.5 , 1982 .

[95]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[96]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae , 1976 .