Annealed Scaling for a Charged Polymer

[1]  R. D. Santos,et al.  The quenched limiting distributions of a charged-polymer model , 2013, 1312.0751.

[2]  D. Ioffe,et al.  Self-Attractive Random Walks: The Case of Critical Drifts , 2011, 1104.4615.

[3]  T. Mountford,et al.  Crossing velocities for an annealed random walk in a random potential , 2011, 1103.0515.

[4]  A. Asselah Annealed upper tails for the energy of a charged polymer , 2011 .

[5]  D. Khoshnevisan,et al.  Charged Polymers in the Attractive Regime: A First-Order Transition from Brownian Scaling to Four-Point Localization , 2010, 1011.1452.

[6]  Yueyun Hu,et al.  Strong approximations in a charged-polymer model , 2009, Period. Math. Hung..

[7]  A. Asselah Annealed Lower Tails for the Energy of a Charged Polymer , 2009, 0909.5291.

[8]  Xia Chen Limit laws for the energy of a charged polymer , 2008, 0808.3037.

[9]  F. Hollander,et al.  Large deviations for the one-dimensional Edwards model , 2002, math/0203214.

[10]  M. Biskup,et al.  Long-time tails in the parabolic Anderson model with bounded potential , 2000, math-ph/0004014.

[11]  W. König,et al.  Central limit theorem for the Edwards model , 1997 .

[12]  B. Tóth Generalized Ray-Knight theory and limit theorems for self-interacting random walks on $\mathbb{Z}^1$ , 1996 .

[13]  W. König A central limit theorem for a one-dimensional polymer measure , 1996 .

[14]  Bálint Tóth,et al.  The "true'' self-avoiding walk with bond repulsion on Z: limit theorems , 1995 .

[15]  F. Hollander,et al.  Scaling for a random polymer , 1995 .

[16]  F. Hollander,et al.  On a variational problem for an infinite particle system in a random medium Part II: The local growth rate , 1994 .

[17]  B. Derrida,et al.  Low-temperature properties of directed walks with random self interactions , 1994 .

[18]  F. Hollander,et al.  A Variational Characterization of the Speed of a One-Dimensional Self- Repellent Random Walk , 1993 .

[19]  R. Durrett Probability: Theory and Examples , 1993 .

[20]  B. Derrida,et al.  A Model of Directed Walks with Random Self-Interactions , 1992 .

[21]  M. Kardar,et al.  Polymers with Random Self-Interactions , 1991 .

[22]  Martin Zerner,et al.  Quelques propriétés spectrales des opérateurs positifs , 1987 .

[23]  P. Ney A refinement of the coupling method in renewal theory , 1981 .

[24]  Michael G. Crandall,et al.  Bifurcation, perturbation of simple eigenvalues, itand linearized stability , 1973 .

[25]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[26]  F. Spitzer Principles Of Random Walk , 1965 .

[27]  J. M. Hammersley,et al.  Generalization of the Fundamental Theorem on Subadditive Functions , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  K. Chung Markov Chains with Stationary Transition Probabilities , 1961 .

[29]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[30]  Kristian Kirsch,et al.  Theory Of Ordinary Differential Equations , 2016 .

[31]  Jiming Jiang Sums of Independent Random Variables , 2010 .

[32]  D. Khoshnevisan,et al.  From charged polymers to random walk in random scenery , 2008 .

[33]  F. Hollander,et al.  Central limit theorem for a weakly interacting random polymer , 1996 .

[34]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[35]  H. Attouch Variational convergence for functions and operators , 1984 .

[36]  Tosio Kato Perturbation theory for linear operators , 1966 .

[37]  F. Knight,et al.  Random walks and a sojourn density process of Brownian motion , 1963 .

[38]  F. Smithies Linear Operators , 1954, Nature.