Quantum critical dynamics in a 5,000-qubit programmable spin glass

[1]  Daniel A. Lidar,et al.  Coherent quantum annealing in a programmable 2,000 qubit Ising chain , 2022, Nature Physics.

[2]  M. Jünger,et al.  McSparse: Exact Solutions of Sparse Maximum Cut and Sparse Unconstrained Binary Quadratic Optimization Problems , 2022, ALENEX.

[3]  W. Zurek,et al.  Quantum phase transition dynamics in the two-dimensional transverse-field Ising model , 2021, Science advances.

[4]  M. Lukin,et al.  Quantum optimization of maximum independent set using Rydberg atom arrays , 2018, Science.

[5]  D. Rossini,et al.  Coherent and dissipative dynamics at quantum phase transitions , 2021, Physics Reports.

[6]  Mark W. Johnson,et al.  Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets , 2021, Nature Communications.

[7]  D. Barredo,et al.  Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms , 2020, Nature.

[8]  C. Chamon,et al.  Experimental realization of classical Z2 spin liquids in a programmable quantum device , 2020, Physical Review B.

[9]  C. Monroe,et al.  Programmable quantum simulations of spin systems with trapped ions , 2019, Reviews of Modern Physics.

[10]  H. Katzgraber,et al.  Griffiths-McCoy singularity on the diluted Chimera graph: Monte Carlo simulations and experiments on quantum hardware , 2020, 2006.16219.

[11]  Andrew D. King,et al.  Simulating the Shastry-Sutherland Ising Model Using Quantum Annealing , 2020, PRX Quantum.

[12]  A. Sandvik,et al.  Scaling and Diabatic Effects in Quantum Annealing with a D-Wave Device. , 2019, Physical review letters.

[13]  A. Sandvik,et al.  Monte Carlo Renormalization Flows in the Space of Relevant and Irrelevant Operators: Application to Three-Dimensional Clock Models. , 2019, Physical review letters.

[14]  Helmut G. Katzgraber,et al.  Perspectives of quantum annealing: methods and implementations , 2019, Reports on progress in physics. Physical Society.

[15]  Daniel A. Lidar,et al.  Exploring More-Coherent Quantum Annealing , 2018, 2018 IEEE International Conference on Rebooting Computing (ICRC).

[16]  M. W. Johnson,et al.  Phase transitions in a programmable quantum spin glass simulator , 2018, Science.

[17]  Mark W. Johnson,et al.  Observation of topological phenomena in a programmable lattice of 1,800 qubits , 2018, Nature.

[18]  Daniel A. Lidar,et al.  Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing , 2017, Physical Review X.

[19]  A. Sandvik,et al.  Dynamic scaling in the two-dimensional Ising spin glass with normal-distributed couplings. , 2017, Physical review. E.

[20]  I. Bloch,et al.  Quantum simulations with ultracold atoms in optical lattices , 2017, Science.

[21]  A P Young,et al.  Critical and Griffiths-McCoy singularities in quantum Ising spin glasses on d-dimensional hypercubic lattices: A series expansion study. , 2017, Physical review. E.

[22]  L. Cugliandolo,et al.  Critical percolation in the dynamics of the 2D ferromagnetic Ising model , 2017, 1705.06508.

[23]  D. Rosenberg,et al.  Coherent Coupled Qubits for Quantum Annealing , 2017, 1701.06544.

[24]  A. Sandvik,et al.  Dual time scales in simulated annealing of a two-dimensional Ising spin glass. , 2016, Physical review. E.

[25]  Vasil S. Denchev,et al.  Computational multiqubit tunnelling in programmable quantum annealers , 2015, Nature Communications.

[26]  F. Romá,et al.  Unconventional critical activated scaling of two-dimensional quantum spin glasses , 2015, 1512.03594.

[27]  H. Neven,et al.  Understanding Quantum Tunneling through Quantum Monte Carlo Simulations. , 2015, Physical review letters.

[28]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[29]  P. Zoller,et al.  A quantum annealing architecture with all-to-all connectivity from local interactions , 2015, Science Advances.

[30]  Daniel A. Lidar,et al.  Probing for quantum speedup in spin-glass problems with planted solutions , 2015, 1502.01663.

[31]  Andrew J. Ochoa,et al.  Efficient Cluster Algorithm for Spin Glasses in Any Space Dimension. , 2015, Physical review letters.

[32]  A. Young,et al.  Universal dynamic scaling in three-dimensional Ising spin glasses. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  M. Troyer,et al.  Quantum versus classical annealing of Ising spin glasses , 2014, Science.

[34]  A. Sandvik,et al.  Quantum versus classical annealing: insights from scaling theory and results for spin glasses on 3-regular graphs. , 2014, Physical review letters.

[35]  Matthias Troyer,et al.  Optimised simulated annealing for Ising spin glasses , 2014, Comput. Phys. Commun..

[36]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[37]  Firas Hamze,et al.  Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines , 2014, 1401.1546.

[38]  A. Sandvik,et al.  Dynamic scaling at classical phase transitions approached through non-equilibrium quenching , 2013, 1310.6327.

[39]  C. Newman,et al.  Spin Glasses and Complexity , 2013 .

[40]  Arnab Sen,et al.  Phase transitions in the frustrated Ising model on the square lattice , 2012, 1212.5339.

[41]  H. Nishimori,et al.  Real-space renormalization-group approach to the random transverse-field Ising model in finite dimensions , 2012, 1210.5053.

[42]  S. Gubser,et al.  Kibble-Zurek problem: Universality and the scaling limit , 2012, 1202.5277.

[43]  D. Huse,et al.  Nonequilibrium dynamic critical scaling of the quantum Ising chain. , 2011, Physical review letters.

[44]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[45]  A. Sandvik,et al.  Universal nonequilibrium quantum dynamics in imaginary time , 2011, 1106.4078.

[46]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[47]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[48]  M. W. Johnson,et al.  Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor , 2010, 1004.1628.

[49]  A. Polkovnikov,et al.  Quench dynamics near a quantum critical point , 2009, 0909.5181.

[50]  M. W. Johnson,et al.  Experimental demonstration of a robust and scalable flux qubit , 2009, 0909.4321.

[51]  Andrea Pelissetto,et al.  Critical behavior of three-dimensional Ising spin glass models , 2008, 0809.3329.

[52]  L. Viola,et al.  Dynamical non-ergodic scaling in continuous finite-order quantum phase transitions , 2008, 0809.2831.

[53]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[54]  D. McMahon Adiabatic Quantum Computation , 2008 .

[55]  M. Hasenbusch,et al.  Critical behavior of the three-dimensional ± J Ising model at the paramagnetic-ferromagnetic transition line , 2007 .

[56]  M. Hasenbusch,et al.  Magnetic-glassy multicritical behavior of the three-dimensional +- J Ising model , 2007, 0707.2866.

[57]  Jacek Dziarmaga,et al.  Dynamics of a quantum phase transition: exact solution of the quantum Ising model. , 2005, Physical review letters.

[58]  P. Zoller,et al.  Dynamics of a quantum phase transition. , 2005, Physical review letters.

[59]  A. Polkovnikov Universal adiabatic dynamics in the vicinity of a quantum critical point , 2003, cond-mat/0312144.

[60]  Bikas K. Chakrabarti,et al.  Quantum Annealing and Other Optimization Methods , 2005 .

[61]  A. Hartmann,et al.  Low-temperature behavior of two-dimensional Gaussian Ising spin glasses , 2004, cond-mat/0402036.

[62]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[63]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[64]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[65]  S. Caracciolo,et al.  UNIVERSAL FINITE-SIZE SCALING FUNCTIONS IN THE 3D ISING SPIN GLASS , 1999, cond-mat/9904246.

[66]  A. Hartmann GROUND-STATE BEHAVIOR OF THE THREE-DIMENSIONAL J RANDOM-BOND ISING MODEL , 1998, cond-mat/9808197.

[67]  M. Henkel Finite-Size Scaling , 1999 .

[68]  H. Rieger,et al.  Critical Behavior and Griffiths-McCoy Singularities in the Two-Dimensional Random Quantum Ising Ferromagnet , 1998, cond-mat/9812414.

[69]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[70]  M. Fisher Renormalization group theory: Its basis and formulation in statistical physics , 1998 .

[71]  H. Rieger,et al.  Application of a continuous time cluster algorithm to the two-dimensional random quantum Ising ferromagnet , 1998, cond-mat/9802104.

[72]  G. Parisi,et al.  Numerical Simulations of Spin Glass Systems , 1997, cond-mat/9701016.

[73]  W. Zurek Cosmological experiments in condensed matter systems , 1996, cond-mat/9607135.

[74]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[75]  M. Krečmerová,et al.  Lipases as Tools in the Synthesis of Prodrugs from Racemic 9-(2,3-Dihydroxypropyl)adenine , 2012, Molecules.

[76]  Young,et al.  Phase transition in the three-dimensional +/-J Ising spin glass. , 1995, Physical review. B, Condensed matter.

[77]  S. Kak Information, physics, and computation , 1996 .

[78]  Bhatt,et al.  Quantum critical behavior of a three-dimensional Ising spin glass in a transverse magnetic field. , 1994, Physical review letters.

[79]  Young,et al.  Zero-temperature quantum phase transition of a two-dimensional Ising spin glass. , 1994, Physical review letters.

[80]  H. Nishimori Boundary between the Ferromagnetic and Spin Glass Phases , 1992 .

[81]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[82]  W. H. Zurek,et al.  Cosmological experiments in superfluid helium? , 1985, Nature.

[83]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[84]  M. Fisher,et al.  Nonlinear scaling fields and corrections to scaling near criticality , 1983 .

[85]  R. Feynman Simulating physics with computers , 1999 .

[86]  M. Suzuki,et al.  Relationship between d-Dimensional Quantal Spin Systems and (d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin Correlations , 1976 .

[87]  T W B Kibble,et al.  Topology of cosmic domains and strings , 1976 .

[88]  Michael E. Fisher,et al.  Scaling Theory for Finite-Size Effects in the Critical Region , 1972 .