A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits

We present an algorithm for computing depth-optimal decompositions of logical operations, leveraging a meet-in-the-middle technique to provide a significant speedup over simple brute force algorithms. As an illustration of our method, we implemented this algorithm and found factorizations of commonly used quantum logical operations into elementary gates in the Clifford+T set. In particular, we report a decomposition of the Toffoli gate over the set of Clifford and T gates. Our decomposition achieves a total T-depth of 3, thereby providing a 40% reduction over the previously best known decomposition for the Toffoli gate. Due to the size of the search space, the algorithm is only practical for small parameters, such as the number of qubits, and the number of gates in an optimal implementation.

[1]  Guowu Yang,et al.  Quantum logic synthesis by symbolic reachability analysis , 2004, Proceedings. 41st Design Automation Conference, 2004..

[2]  John P. Hayes,et al.  Optimal synthesis of linear reversible circuits , 2008, Quantum Inf. Comput..

[3]  K. N. Patel,et al.  Efficient Synthesis of Linear Reversible Circuits , 2003 .

[4]  Krysta M. Svore,et al.  A Depth-Optimal Canonical Form for Single-qubit Quantum Circuits , 2012, 1206.3223.

[5]  Pérès,et al.  Reversible logic and quantum computers. , 1985, Physical review. A, General physics.

[6]  J. Gambetta,et al.  Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.

[7]  Dmitri Maslov,et al.  A Study of Optimal 4-Bit Reversible Toffoli Circuits and Their Synthesis , 2011, IEEE Transactions on Computers.

[8]  Dmitri Maslov,et al.  Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..

[9]  Robert E. Tarjan,et al.  Deletion without rebalancing in balanced binary trees , 2010, SODA '10.

[10]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[11]  Guowu Yang,et al.  Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[12]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[13]  Helmut G. Katzgraber,et al.  Strong resilience of topological codes to depolarization , 2012, 1202.1852.

[14]  Dmitri Maslov,et al.  Comparison of the cost metrics through investigation of the relation between optimal NCV and optimal NCT three-qubit reversible circuits , 2007, IET Comput. Digit. Tech..

[15]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[16]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[17]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[18]  Adam C. Whiteside,et al.  Towards practical classical processing for the surface code: Timing analysis , 2012, 1202.5602.

[19]  Alex Bocharov,et al.  Resource-optimal single-qubit quantum circuits. , 2012, Physical review letters.

[20]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[21]  D. Leung,et al.  Methodology for quantum logic gate construction , 2000, quant-ph/0002039.

[22]  D. M. Miller,et al.  Comparison of the Cost Metrics for Reversible and Quantum Logic Synthesis , 2005, quant-ph/0511008.

[23]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[24]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[25]  N. S. Barnett,et al.  Private communication , 1969 .

[26]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[27]  John P. Hayes,et al.  Synthesis of reversible logic circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[28]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[29]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[30]  Austin G. Fowler Constructing arbitrary Steane code single logical qubit fault-tolerant gates , 2011, Quantum Inf. Comput..