A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits
暂无分享,去创建一个
M. Mosca | M. Amy | D. Maslov | M. Roetteler | M. Rötteler | M. Mosca | D. Maslov | M. Amy
[1] Guowu Yang,et al. Quantum logic synthesis by symbolic reachability analysis , 2004, Proceedings. 41st Design Automation Conference, 2004..
[2] John P. Hayes,et al. Optimal synthesis of linear reversible circuits , 2008, Quantum Inf. Comput..
[3] K. N. Patel,et al. Efficient Synthesis of Linear Reversible Circuits , 2003 .
[4] Krysta M. Svore,et al. A Depth-Optimal Canonical Form for Single-qubit Quantum Circuits , 2012, 1206.3223.
[5] Pérès,et al. Reversible logic and quantum computers. , 1985, Physical review. A, General physics.
[6] J. Gambetta,et al. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.
[7] Dmitri Maslov,et al. A Study of Optimal 4-Bit Reversible Toffoli Circuits and Their Synthesis , 2011, IEEE Transactions on Computers.
[8] Dmitri Maslov,et al. Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..
[9] Robert E. Tarjan,et al. Deletion without rebalancing in balanced binary trees , 2010, SODA '10.
[10] A. Fowler,et al. High-threshold universal quantum computation on the surface code , 2008, 0803.0272.
[11] Guowu Yang,et al. Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[12] S. Lloyd. Quantum-Mechanical Computers , 1995 .
[13] Helmut G. Katzgraber,et al. Strong resilience of topological codes to depolarization , 2012, 1202.1852.
[14] Dmitri Maslov,et al. Comparison of the cost metrics through investigation of the relation between optimal NCV and optimal NCT three-qubit reversible circuits , 2007, IET Comput. Digit. Tech..
[15] Raymond Laflamme,et al. An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..
[16] Michael A. Nielsen,et al. The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..
[17] Michael J. Biercuk,et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.
[18] Adam C. Whiteside,et al. Towards practical classical processing for the surface code: Timing analysis , 2012, 1202.5602.
[19] Alex Bocharov,et al. Resource-optimal single-qubit quantum circuits. , 2012, Physical review letters.
[20] J. Gambetta,et al. Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.
[21] D. Leung,et al. Methodology for quantum logic gate construction , 2000, quant-ph/0002039.
[22] D. M. Miller,et al. Comparison of the Cost Metrics for Reversible and Quantum Logic Synthesis , 2005, quant-ph/0511008.
[23] John Preskill,et al. Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..
[24] E. Knill,et al. Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.
[25] N. S. Barnett,et al. Private communication , 1969 .
[26] Scott Aaronson,et al. Improved Simulation of Stabilizer Circuits , 2004, ArXiv.
[27] John P. Hayes,et al. Synthesis of reversible logic circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[28] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[29] Daniel A. Spielman,et al. Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.
[30] Austin G. Fowler. Constructing arbitrary Steane code single logical qubit fault-tolerant gates , 2011, Quantum Inf. Comput..