On a phase-field model with a logarithmic nonlinearity

Our aim in this paper is to study the existence of solutions to a phase-field system based on theMaxwell-Cattaneo heat conduction law, with a logarithmic nonlinearity. In particular, we prove, in one and two space dimensions, the existence of a solution which is separated from the singularities of the nonlinear term.

[1]  P. M. Naghdi,et al.  A re-examination of the basic postulates of thermomechanics , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[2]  G. Caginalp An analysis of a phase field model of a free boundary , 1986 .

[3]  S. Choudhuri,et al.  On A Thermoelastic Three-Phase-Lag Model , 2007 .

[4]  C. M. Elliott,et al.  Global Existence and Stability of Solutions to the Phase Field Equations , 1990 .

[5]  Alain Miranville,et al.  The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials , 2010 .

[6]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[7]  S. Gatti,et al.  Corrigendum to Existence of global solutions to the Caginalp phase-field system with dynamic bounda , 2008 .

[8]  A generalization of the Caginalp phase-field system based on the Cattaneo law , 2009 .

[9]  R. Quintanilla,et al.  A Phase-Field Model Based on a Three-Phase-Lag Heat Conduction , 2011 .

[10]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[11]  C. Christov,et al.  Heat conduction paradox involving second-sound propagation in moving media. , 2005, Physical review letters.

[12]  H. Gajewski,et al.  Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .

[13]  M. Grasselli,et al.  Long Time Behavior of Solutions to the Caginalp System with Singular Potential , 2006 .

[14]  Ciprian G. Gal,et al.  The non-isothermal Allen-Cahn equation with dynamic boundary conditions , 2008 .

[15]  S. Gatti,et al.  Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials , 2008 .

[16]  Danielle Hilhorst,et al.  Finite dimensional exponential attractor for the phase field model , 1993 .

[17]  Sergey Zelik,et al.  Well‐posedness and long time behavior of a parabolic‐hyperbolic phase‐field system with singular potentials , 2007 .

[18]  M. Grasselli,et al.  Existence of a universal attractor for a fully hyperbolic phase-field system , 2004 .

[19]  Jie Jiang Convergence to equilibrium for a parabolic–hyperbolic phase field model with Cattaneo heat flux law , 2008 .

[20]  S. Gatti,et al.  Asymptotic behavior of a phase-field system with dynamic boundary conditions , 2006 .

[21]  Sergey Zelik,et al.  THE CAHN-HILLIARD EQUATION WITH SINGULAR POTENTIALS AND DYNAMIC BOUNDARY CONDITIONS , 2009, 0904.4023.

[22]  A. Miranville,et al.  On the Caginalp system with dynamic boundary conditions and singular potentials , 2009 .

[23]  Some generalizations of the Caginalp phase-field system , 2009 .

[24]  Sergey Zelik,et al.  Robust exponential attractors for Cahn‐Hilliard type equations with singular potentials , 2004 .

[25]  Ramón Quintanilla,et al.  A type III phase-field system with a logarithmic potential , 2011, Appl. Math. Lett..

[26]  Eduard Feireisl,et al.  Long‐time convergence of solutions to a phase‐field system , 2001 .

[27]  Convergence to equilibrium for a fully hyperbolic phase‐field model with Cattaneo heat flux law , 2009 .

[28]  A. Miranville,et al.  ROBUST EXPONENTIAL ATTRACTORS FOR SINGULARLY PERTURBED PHASE-FIELD TYPE EQUATIONS , 2002 .

[29]  Jan Prüss,et al.  Convergence to steady states of solutions of the Cahn–Hilliard and Caginalp equations with dynamic boundary conditions , 2006 .