Topology-Oriented Incremental Algorithm for the Robust Construction of the Voronoi Diagrams of Disks

Voronoi diagrams are useful for spatial reasoning, and the robust and efficient construction of the ordinary Voronoi diagram of points is well known. However, its counterpart for circular disks in R2 and spherical balls in R3 remains a challenge. In this article, we propose a topology-oriented incremental algorithm which robustly and efficiently computes a Voronoi diagram by incrementing a new disk generator to an existing one. The key idea is to enforce the convexity of the Voronoi cell corresponding to the incrementing disk so that a simple variation of the algorithm for points proposed by Sugihara in 1992 can be applied. A benchmark using both random and degenerate disks shows that the proposed algorithm is superior to CGAL in both computational efficiency and algorithmic robustness.

[1]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[2]  Deok-Soo Kim,et al.  Representing the Voronoi diagram of a simple polygon using rational quadratic Bézier curves , 1995, Comput. Aided Des..

[3]  Deok-Soo Kim,et al.  A sweepline algorithm for Euclidean Voronoi diagram of circles , 2006, Comput. Aided Des..

[4]  Kokichi Sugihara,et al.  A solid modelling system free from topological inconsistency , 1990 .

[5]  Olivier Devillers,et al.  Qualitative Symbolic Perturbation: a new geometry-based perturbation framework , 2012 .

[6]  Deok-Soo Kim,et al.  Quasi-worlds and quasi-operators on quasi-triangulations , 2010, Comput. Aided Des..

[7]  Ioannis Z. Emiris,et al.  ECG IST-2000-26473 Effective Computational Geometry for Curves and Surfaces ECG Technical Report No . : ECG-TR-122201-01 Predicates for the Planar Additively Weighted Voronoi Diagram , 1993 .

[8]  Amir G. Aghdam,et al.  An Energy-Efficient Strategy to Improve Coverage in a Network of Wireless Mobile Sensors with Nonidentical Sensing Ranges , 2013, 2013 IEEE 77th Vehicular Technology Conference (VTC Spring).

[9]  Cao An Wang A new generalized voronoi diagram in the plane , 1988 .

[10]  Deok-Soo Kim,et al.  BetaCavityWeb: a webserver for molecular voids and channels , 2015, Nucleic Acids Res..

[11]  Chee-Keng Yap,et al.  A geometric consistency theorem for a symbolic perturbation scheme , 1988, SCG '88.

[12]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[13]  Xiang-Yang Li,et al.  Coverage in wireless ad-hoc sensor networks , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[14]  Deok-Soo Kim,et al.  Three-dimensional beta-shapes and beta-complexes via quasi-triangulation , 2010, Comput. Aided Des..

[15]  Martin Held,et al.  VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments , 2001, Comput. Geom..

[16]  Deok-Soo Kim,et al.  Anomalies in quasi-triangulations and beta-complexes of spherical atoms in molecules , 2013, Comput. Aided Des..

[17]  Donguk Kim,et al.  Disk packing for the estimation of the size of a wire bundle , 2004 .

[18]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[19]  D. T. Lee,et al.  Generalization of Voronoi Diagrams in the Plane , 1981, SIAM J. Comput..

[20]  Deok-Soo Kim,et al.  Voronoi diagrams, quasi-triangulations, and beta-complexes for disks in R2: the theory and implementation in BetaConcept , 2014, J. Comput. Des. Eng..

[21]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[22]  Deok-Soo Kim,et al.  BetaVoid: Molecular voids via beta‐complexes and Voronoi diagrams , 2014, Proteins.

[23]  Kokichi Sugihara Approximation of Generalized Voronoi Diagrams by Ordinary Voronoi Diagrams , 1993, CVGIP Graph. Model. Image Process..

[24]  Martin Held,et al.  Author's Personal Copy Computer-aided Design Topology-oriented Incremental Computation of Voronoi Diagrams of Circular Arcs and Straight-line Segments , 2022 .

[25]  Rong Zheng,et al.  Geometric algorithms for target localization and tracking under location uncertainties in wireless sensor networks , 2012, 2012 Proceedings IEEE INFOCOM.

[26]  Deok-Soo Kim,et al.  Beta‐decomposition for the volume and area of the union of three‐dimensional balls and their offsets , 2012, J. Comput. Chem..

[27]  Deok-Soo Kim,et al.  BetaSCPWeb: side-chain prediction for protein structures using Voronoi diagrams and geometry prioritization , 2016, Nucleic Acids Res..

[28]  Kunwoo Lee,et al.  Principles of CAD/CAM/CAE Systems , 1999 .

[29]  Antonín Pavelka,et al.  CAVER: Algorithms for Analyzing Dynamics of Tunnels in Macromolecules , 2016, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[30]  Deok-Soo Kim,et al.  Voronoi diagram of a circle set from Voronoi diagram of a point set: II. Geometry , 2001, Comput. Aided Geom. Des..

[31]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[32]  Marina L. Gavrilova,et al.  Updating the topology of the dynamic Voronoi diagram for spheres in Euclidean d-dimensional space , 2003, Comput. Aided Geom. Des..

[33]  Eckard Specht A precise algorithm to detect voids in polydisperse circle packings , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Yong Zhou,et al.  Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere , 2010, Bioinform..

[35]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[36]  Micha Sharir,et al.  Intersection and Closest-Pair Problems for a Set of Planar Discs , 1985, SIAM J. Comput..

[37]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[38]  M. Iri,et al.  Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.

[39]  Ioannis Z. Emiris,et al.  The predicates of the Apollonius diagram: Algorithmic analysis and implementation , 2006, Comput. Geom..

[40]  Ligang Liu,et al.  Fast Wavefront Propagation (FWP) for Computing Exact Geodesic Distances on Meshes , 2015, IEEE Transactions on Visualization and Computer Graphics.

[41]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[42]  B. Lubachevsky,et al.  Geometric properties of random disk packings , 1990 .

[43]  Franziska Hoffmann,et al.  Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .

[44]  Chee-Keng Yap,et al.  Towards Exact Geometric Computation , 1997, Comput. Geom..

[45]  Kokichi Sugihara,et al.  A robust Topology-Oriented Incremental algorithm for Voronoi diagrams , 1994, Int. J. Comput. Geom. Appl..

[46]  Christopher J. Van Wyk,et al.  Efficient exact arithmetic for computational geometry , 1993, SCG '93.

[47]  Geert-Jan Giezeman,et al.  On the design of CGAL a computational geometry algorithms library , 2000 .

[48]  Source node , 2004 .

[49]  Robert L. Scot Drysdale,et al.  Generalized Voronoi diagrams and geometric searching , 1979 .

[50]  Martin Held,et al.  On the Computational Geometry of Pocket Machining , 1991, Lecture Notes in Computer Science.

[51]  Yong-Jin Liu Semi-Continuity of Skeletons in Two-Manifold and Discrete Voronoi Approximation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Christopher J. Van Wyk,et al.  Static analysis yields efficient exact integer arithmetic for computational geometry , 1996, TOGS.

[53]  Marina L. Gavrilova,et al.  Swap conditions for dynamic Voronoi diagrams for circles and line segments , 1999, Comput. Aided Geom. Des..

[54]  Xinguo Yu,et al.  Iterated Tabu Search and Variable Neighborhood Descent for packing unequal circles into a circular container , 2016, Eur. J. Oper. Res..

[55]  Olivier Devillers Improved incremental randomized Delaunay triangulation , 1998, SCG '98.

[56]  Boris D. Lubachevsky,et al.  How to Simulate Billiards and Similar Systems , 1991, ArXiv.

[57]  Deok-Soo Kim,et al.  Voronoi diagram of a circle set from Voronoi diagram of a point set: I. Topology , 2001, Computer Aided Geometric Design.

[58]  Mariette Yvinec,et al.  Dynamic Additively Weighted Voronoi Diagrams in 2D , 2002, ESA.