Efficient plane sweeping in parallel

We present techniques which result in improved parallel algorithms for a number of problems whose efficient sequential algorithms use the plane-sweeping paradigm. The problems for which we give improved algorithms include intersection detection, trapezoidal decomposition, triangulation, and planar point location. Our technique can be used to improve on the previous time bound while keeping the space and processor bounds the same, or improve on the previous space bound while keeping the time and processor bounds the same. We also give efficient parallel algorithms for visibility from a point, 3-dimensional maxima, multiple range-counting, and rectilinear segment intersection counting. We never use the AKS sorting network in any of our algorithms.

[1]  H. T. Kung,et al.  On Finding the Maxima of a Set of Vectors , 1975, JACM.

[2]  Leslie G. Valiant,et al.  Parallelism in Comparison Problems , 1975, SIAM J. Comput..

[3]  Michael Ian Shamos,et al.  Geometric intersection problems , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[4]  Anita Liu Chow Parallel algorithms for geometric problems , 1980 .

[5]  Jan van Leeuwen,et al.  Maintenance of Configurations in the Plane , 1981, J. Comput. Syst. Sci..

[6]  David Avis,et al.  A Linear Algorithm for Computing the Visibility Polygon from a Point , 1981, J. Algorithms.

[7]  Allan Borodin,et al.  Routing, merging and sorting on parallel models of computation , 1982, STOC '82.

[8]  George S. Lueker,et al.  A Data Structure for Dynamic Range Queries , 1982, Inf. Process. Lett..

[9]  Mark H. Overmars,et al.  On the Equivalence of Some Rectangle Problems , 1982, Inf. Process. Lett..

[10]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[11]  E. Szemerédi,et al.  Sorting inc logn parallel steps , 1983 .

[12]  Intersecting is easier than sorting , 1984, STOC '84.

[13]  D. T. Lee,et al.  Computational Geometry—A Survey , 1984, IEEE Transactions on Computers.

[14]  B. Chazelle Intersecting Is Easier than Sorting , 1984, STOC.

[15]  M. Goodrich An Optimal Parallel Algorithm For the All Nearest - - Neighbor Problem for a Convex Polygon , 1985 .

[16]  Leonidas J. Guibas,et al.  Parallel computational geometry , 1988, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[17]  Mikhail J. Atallah,et al.  Efficient Parallel Solutions to Geometric Problems , 1985, ICPP.

[18]  Larry Rudolph,et al.  The power of parallel prefix , 1985, IEEE Transactions on Computers.

[19]  Mikhail J. Atallah,et al.  Efficient Parallel Solutions to Some Geometric Problems , 1986, J. Parallel Distributed Comput..