Linear Algebra, Old and New

The purpose of my talk is to present old and new results which lie on the border between Linear Algebra and Computational Commutative Algebra. The main source is the recent book Computational Linear and Commutative Algebra by Martin Kreuzer and myself. The talk starts by recalling some old results related to one endomorphism of a finitely generated vector space. Then we progress to considering families of pairwise commuting endomorphisms: this opens up a new world. The merits of this modern approach to linear algebra will be described. Among them, we will see the connection to many fundamental problems in computer algebra such as computing the primary decomposition of zero-dimensional ideals, and solving systems of polynomial equations. The final part of the talk will be devoted to exhibiting a link between advanced tools in linear algebra and an old theme in algebraic geometry.

[1]  Martin Kreuzer,et al.  On the Canonical Module of A 0-Dimensional Scheme , 1994, Canadian Journal of Mathematics.

[2]  Ngoc Long Le Various Differents for 0-Dimensional Schemes and Applications , 2016 .

[3]  Martin Kreuzer,et al.  Computing subschemes of the border basis scheme , 2020, Int. J. Algebra Comput..

[4]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .

[5]  Martin Kreuzer,et al.  Computational Linear and Commutative Algebra , 2016 .

[6]  Joe Harris,et al.  Cayley-Bacharach theorems and conjectures , 1996 .

[7]  A. Geramita,et al.  Gorenstein algebras and the Cayley-Bacharach theorem , 1985 .

[8]  Daniel Gorenstein,et al.  An arithmetic theory of adjoint plane curves , 1952 .

[9]  Shuhong Gao,et al.  Primary decomposition of zero-dimensional ideals over finite fields , 2009, Math. Comput..

[10]  David A. Cox Solving equations via algebras , 2005 .

[11]  Kazuhiro Yokoyama,et al.  Usage of Modular Techniques for Efficient Computation of Ideal Operations , 2018, Math. Comput. Sci..

[12]  L. Robbiano,et al.  On the Cayley-Bacharach Property , 2018, Communications in Algebra.

[13]  Daniel Lazard,et al.  Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..

[14]  H. Michael Möller,et al.  Multivariate Polynomial System Solving Using Intersections of Eigenspaces , 2001, J. Symb. Comput..

[15]  M. Chasles,et al.  Aperçu historique sur l'origine et le développement des méthodes en géométrie, particulièrement de celles qui se rapportent à la géométrie moderne, suivi d'un mémoire de géométrie sur deux principes généraux de la science, la dualité et l'homographie , 1837 .

[16]  Alicia Dickenstein,et al.  Solving Polynomial Equations: Foundations, Algorithms, and Applications , 2010 .

[17]  Kazuhiro Yokoyama,et al.  Implementation of prime decomposition of polynomial ideals over small finite fields , 2003, SIGS.

[18]  Martin Kreuzer,et al.  Computational Commutative Algebra 1 , 2000 .

[19]  Martin Kreuzer,et al.  Cayley-Bacharach schemes and their canonical modules , 1993 .

[20]  John Abbott,et al.  Computing and Using Minimal Polynomials , 2020, J. Symb. Comput..

[21]  Glen Mullineux,et al.  Intersection of curves , 1986 .

[22]  M. Kreuzer On 0-dimensional complete intersections , 1992 .

[23]  I. Bacharach,et al.  Ueber den Cayley'schen Schnittpunktsatz , 1886 .