A Stochastic Nonlinear Regression Estimator Using Wavelets
暂无分享,去创建一个
[1] A. J. Collins,et al. Introduction To Multivariate Analysis , 1981 .
[2] N. C. Nigam. Introduction to Random Vibrations , 1983 .
[3] Y. Meyer. Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .
[4] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[5] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[6] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[7] Stephen G. Hall,et al. Applied econometric techniques , 1991 .
[8] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[9] Y. Meyer. Ondelettes sur l'intervalle. , 1991 .
[10] Charles K. Chui,et al. An Introduction to Wavelets , 1992 .
[11] J. MacKinnon,et al. Estimation and inference in econometrics , 1994 .
[12] Y. Meyer. Wavelets and Operators , 1993 .
[13] I. Daubechies,et al. Multiresolution analysis, wavelets and fast algorithms on an interval , 1993 .
[14] D. Donoho,et al. Translation-Invariant De-Noising , 1995 .
[15] Qinghua Zhang,et al. Wavelets and Regression Analysis , 1995 .
[16] A. Antoniadis,et al. Variance Function Estimation in Regression by Wavelet Methods , 1995 .
[17] Y. Benjamini,et al. Thresholding of Wavelet Coefficients as Multiple Hypotheses Testing Procedure , 1995 .