A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes.

Tubular nanostructures have stimulated extensive research efforts in recent years because of their technological importance in advanced electronic or magnetic devices and prospective applications in catalysis, sensors, and biological separation and transport. To date, various methods including reductive sulfidization, thermal decomposition of precursors, atomic layer deposition (ALD), hydrothermal pyrolysis, galvanic replacement reactions, and surfactantor template-based growth have been developed for the fabrication of such tubular nanostructures. Among them, template-based synthesis using anodic aluminum oxide (AAO) or track-etched polymer membranes has attracted much attention, because it provides several distinct advantages over other approaches. It offers a convenient way for producing structurally uniform nanostructures periodically aligned in template matrices. A wide range of materials including metals, semiconductors, and polymers have been prepared in the form of nanotubes. However, few examples have been reported on the fabrication of metal nanotubes despite their technological importance. The development of a generalized method for the fabrication of aligned metalnanotube arrays remains a challenge. Precise control of the nanotube growth process and formation of well-aligned arrays will greatly assist investigations of their physical properties and their potential use in nanoscale fluidics, chemical and biological separations, sensors, and catalysts. Herein, we report a novel approach for the preparation of metallic nanotubes based on the preferential electrodeposition of a metal along the pore walls of an AAO membrane in the presence of metallic nanoparticles on the wall surfaces (Figure 1). Several reports on the immobilization of metallic nanoparticles on the pore walls of AAO have been published previously. Schmid and co-workers showed that Au nanoparticles can be self-assembled on AAO channels modified with organosilane molecules, which function as molecular anchors binding the nanoparticles. More recently, Rubin-

[1]  Daihua Zhang,et al.  Single crystalline magnetite nanotubes. , 2005, Journal of the American Chemical Society.

[2]  W. Tremel,et al.  VS2‐Nanoröhren mit Amin‐Templaten der VOx‐Vorstufen und reversible Cu‐Einlagerung in NT‐VS2 , 2005 .

[3]  Carl P. Tripp,et al.  Template‐Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well‐Controlled Dimensions on Substrates , 2004 .

[4]  P. Stroeve,et al.  Fabrication of nanocables by electrochemical deposition inside metal nanotubes. , 2004, Journal of the American Chemical Society.

[5]  M. Boman,et al.  Deposition of palladium nanoparticles on the pore walls of anodic alumina using sequential electroless deposition , 2004 .

[6]  C. Mu,et al.  Uniform Metal Nanotube Arrays by Multistep Template Replication and Electrodeposition , 2004 .

[7]  S. Dou,et al.  Ni(OH)2 tubes with mesoscale dimensions as positive-electrode materials of alkaline rechargeable batteries. , 2004, Angewandte Chemie.

[8]  Weihong Tan,et al.  DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity , 2004, Science.

[9]  Lizhen Qu,et al.  Facile Route to Silver Nanotubes , 2004 .

[10]  Jaegab Lee,et al.  Formation of TiO2 and ZrO2 Nanotubes Using Atomic Layer Deposition with Ultraprecise Control of the Wall Thickness , 2004 .

[11]  B. Geng,et al.  Autocatalyzed template fabrication and magnetic study of CoFeP nanowire arrays , 2004 .

[12]  C. R. Martin,et al.  Template synthesis of gold nanotubes in an anodic alumina membrane. , 2004, Journal of nanoscience and nanotechnology.

[13]  Ting Xie,et al.  Synthesis of Eu2O3 nanotube arrays through a facile sol-gel template approach. , 2004, Journal of the American Chemical Society.

[14]  T. Yanagishita,et al.  Carbon Nanotubes with a Triangular Cross‐section, Fabricated Using Anodic Porous Alumina as the Template , 2004 .

[15]  J. Dumesic,et al.  Gold-nanotube membranes for the oxidation of CO at gas-water interfaces. , 2004, Angewandte Chemie.

[16]  Younan Xia,et al.  Multiple‐Walled Nanotubes Made of Metals , 2004 .

[17]  C. R. Martin,et al.  Nanotube Membrane Based Biosensors , 2004 .

[18]  T. Kijima,et al.  Noble-metal nanotubes (Pt, Pd, Ag) from lyotropic mixed-surfactant liquid-crystal templates. , 2004, Angewandte Chemie.

[19]  H. A. Therese,et al.  VS2 nanotubes containing organic-amine templates from the NT-VOx precursors and reversible copper intercalation in NT-VS2. , 2004, Angewandte Chemie.

[20]  F. Caruso,et al.  Nanotubes Prepared by Layer‐by‐Layer Coating of Porous Membrane Templates , 2003 .

[21]  Younan Xia,et al.  Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids. , 2003, Journal of the American Chemical Society.

[22]  Dapeng Yu,et al.  Optical properties of the ZnO nanotubes synthesized via vapor phase growth , 2003 .

[23]  G. Park,et al.  Ruthenium Oxide Nanotube Arrays Fabricated by Atomic Layer Deposition Using a Carbon Nanotube Template , 2003 .

[24]  Heon-Jin Choi,et al.  Single-crystal gallium nitride nanotubes , 2003, Nature.

[25]  Deyu Li,et al.  Fabrication of silica nanotube arrays from vertical silicon nanowire templates. , 2003, Journal of the American Chemical Society.

[26]  C. R. Martin,et al.  Electrophoretic protein transport in gold nanotube membranes. , 2003, Analytical chemistry.

[27]  Tengfei Xie,et al.  Self-assembly synthesis and magnetic studies of Co–P alloy nanowire arrays , 2003 .

[28]  R. Nolte,et al.  Conducting polymers with confined dimensions: Track-etch membranes for amperometric biosensor applications , 2002 .

[29]  M. Nath,et al.  Nanotubes of Group 4 metal disulfides. , 2002, Angewandte Chemie.

[30]  Yoshio Kobayashi,et al.  Template-synthesized nanotubes for chemical separations and analysis. , 2002, Chemistry.

[31]  Hans Söderlund,et al.  Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations , 2002, Science.

[32]  Zheng Xu,et al.  Template Synthesis of an Array of Nickel Nanotubules and Its Magnetic Behavior , 2001 .

[33]  R. G. Freeman,et al.  Submicrometer metallic barcodes. , 2001, Science.

[34]  Yiying Wu,et al.  Bismuth nanotubes: a rational low-temperature synthetic route. , 2001, Journal of the American Chemical Society.

[35]  Hideki Masuda,et al.  Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution , 1998 .

[36]  Andreas Heilmann,et al.  Alumina membranes — templates for novel nanocomposites , 1998 .

[37]  Charles R. Martin,et al.  Nanotubule-Based Molecular-Filtration Membranes , 1997 .

[38]  Hideki Masuda,et al.  Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask , 1996 .

[39]  Charles R. Martin,et al.  FABRICATION AND EVALUATION OF NANOELECTRODE ENSEMBLES , 1995 .

[40]  R. Tenne,et al.  High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes , 1995, Science.

[41]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[42]  Lee,et al.  Magnetization curling reversal for an infinite hollow cylinder. , 1994, Physical review. B, Condensed matter.