Global Regularity versus Infinite-Time Singularity Formation in a Chemotaxis Model with Volume-Filling Effect and Degenerate Diffusion

A system of quasi-linear parabolic and elliptic-parabolic equations describing chemotaxis is studied. Due to the assumed presence of a volume-filling effect it is assumed that there is an impassable threshold for the density of cells. This assumption leads to singular or degenerate operators in both the diffusive and the chemotactic components of the flux of cells. We improve results from earlier works and find critical conditions which reflect the interplay between diffusion and chemotaxis and warrant that classical solutions are global in time and separated uniformly from the threshold. In the case of degenerate diffusion for the elliptic-parabolic version of the model we prove the existence of radially symmetric solutions which exhibit a phenomenon of infinite-time singularity formation in that they are global and smooth but attain the threshold in the large time limit.

[1]  Z. A. Wang,et al.  On Chemotaxis Models with Cell Population Interactions , 2010 .

[2]  Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski–Poisson system , 2008, 0810.3367.

[3]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[4]  Zhian Wang,et al.  Singularity formation in chemotaxis systems with volume-filling effect , 2011 .

[5]  Yung-Sze Choi,et al.  Prevention of blow-up by fast diffusion in chemotaxis , 2010 .

[6]  Thomas Hillen,et al.  Classical solutions and pattern formation for a volume filling chemotaxis model. , 2007, Chaos.

[7]  Youshan Tao,et al.  Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity , 2011, 1106.5345.

[8]  Michael Winkler,et al.  Does a ‘volume‐filling effect’ always prevent chemotactic collapse? , 2010 .

[9]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[10]  Yoshie Sugiyama,et al.  Global existence and decay properties for a degenerate Keller–Segel model with a power factor in drift term , 2006 .

[11]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[12]  Michael Winkler,et al.  A critical exponent in a degenerate parabolic equation , 2002 .

[13]  Dariusz Wrzosek,et al.  Volume Filling Effect in Modelling Chemotaxis , 2010 .

[14]  Michael Winkler,et al.  Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect , 2010 .

[15]  Tomasz Cieślak,et al.  Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions , 2007 .

[16]  Victor A. Galaktionov,et al.  Rate of Approach to a Singular Steady State in Quasilinear Reaction-Diffusion Equations , 1998 .

[17]  C. Patlak Random walk with persistence and external bias , 1953 .

[18]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[19]  Nikos I. Kavallaris,et al.  Grow-Up Rate and Refined Asymptotics for a Two-Dimensional Patlak-Keller-Segel Model in a Disk , 2008, SIAM J. Math. Anal..

[20]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[21]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[22]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[23]  Sachiko Ishida,et al.  Global existence of weak solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type , 2012 .

[24]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[25]  Zuzanna Szymańska,et al.  On the global existence of solutions to an aggregation model , 2008 .

[26]  Michael Winkler,et al.  Finite-time blow-up in a quasilinear system of chemotaxis , 2008 .

[27]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[28]  D. Wrzosek Model of chemotaxis with threshold density and singular diffusion , 2010 .

[29]  E. Yanagida,et al.  On bounded and unbounded global solutions of a supercritical semilinear heat equation , 2003 .

[30]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[31]  Nicholas D. Alikakos,et al.  An application of the invariance principle to reaction-diffusion equations , 1979 .

[32]  K. Painter,et al.  Volume-filling and quorum-sensing in models for chemosensitive movement , 2002 .

[33]  Philippe Laurençot,et al.  A Chemotaxis Model with Threshold Density and Degenerate Diffusion , 2005 .

[34]  Mark Alber,et al.  Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  José A. Carrillo,et al.  Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .

[36]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.