Erratum: Corrigendum: The European dimension for the mouse genome mutagenesis program

[1]  Christopher P Austin,et al.  The Knockout Mouse Project , 2004, Nature Genetics.

[2]  C. Branda,et al.  Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. , 2004, Developmental cell.

[3]  Franz Vauti,et al.  A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. F. Stewart,et al.  High-throughput engineering of the mouse genome coupled with high-resolution expression analysis , 2003, Nature Biotechnology.

[5]  Conrad C. Huang,et al.  BayGenomics: a resource of insertional mutations in mouse embryonic stem cells , 2003, Nucleic Acids Res..

[6]  Gregor Eichele,et al.  Human chromosome 21 gene expression atlas in the mouse , 2002, Nature.

[7]  Pascal Kahlem,et al.  A gene expression map of human chromosome 21 orthologues in the mouse , 2002, Nature.

[8]  Nancy A. Jenkins,et al.  Recombineering: a powerful new tool for mouse functional genomics , 2001, Nature Reviews Genetics.

[9]  P Chambon,et al.  Site- and time-specific gene targeting in the mouse. , 2001, Methods.

[10]  Hans Lehrach,et al.  Functional Annotation of Mouse Genome Sequences , 2001, Science.

[11]  Klaus Schughart,et al.  Genome-wide, large-scale production of mutant mice by ENU mutagenesis , 2000, Nature Genetics.

[12]  Steve D. M. Brown,et al.  A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse , 2000, Nature Genetics.

[13]  Hans Lehrach,et al.  Establishment of a gene-trap sequence tag library to generate mutant mice from embryonic stem cells , 2000, Nature Genetics.

[14]  D. Cox,et al.  An action plan for mouse genomics , 1999, Nature Genetics.

[15]  Frank Buchholz,et al.  A new logic for DNA engineering using recombination in Escherichia coli , 1998, Nature Genetics.

[16]  P. Angrand,et al.  Improved properties of FLP recombinase evolved by cycling mutagenesis , 1998, Nature Biotechnology.

[17]  P Chambon,et al.  Ligand-activated site-specific recombination in mice. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[18]  C. Logie,et al.  Ligand-regulated site-specific recombination. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[19]  K. Rajewsky,et al.  Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting , 1993, Cell.

[20]  M. Gossen,et al.  Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Berns,et al.  Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. Joyner,et al.  Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. , 1989, Science.

[23]  M. Capecchi,et al.  Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells , 1987, Cell.

[24]  David W. Melton,et al.  Targetted correction of a mutant HPRT gene in mouse embryonic stem cells , 1987, Nature.

[25]  A. Bradley,et al.  Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines , 1984, Nature.

[26]  M. Kaufman,et al.  Establishment in culture of pluripotential cells from mouse embryos , 1981, Nature.