Data Mining: Concepts and Techniques — Slides for Textbook — — Chapter 4 —

! Present an example where data mining is crucial to the success of a business. What data mining functions does this business need? Can they be performed alternatively by data query processing or simple statistical analysis? ! In answering the above (or otherwise), describe the challenges to data mining regarding data mining methodology and user interaction issues.

[1]  Jennifer Widom,et al.  Clustering association rules , 1997, Proceedings 13th International Conference on Data Engineering.

[2]  Thomas G. Dietterich,et al.  A Comparative Review of Selected Methods for Learning from Examples , 1983 .

[3]  Jiawei Han,et al.  Meta-Rule-Guided Mining of Association Rules in Relational Databases , 1995, KDOOD/TDOOD.

[4]  Joseph M. Hellerstein,et al.  Potters Wheel: An interactive framework for data cleaning , 2000 .

[5]  Chris Clifton,et al.  Query flocks: a generalization of association-rule mining , 1998, SIGMOD '98.

[6]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[7]  Heikki Mannila,et al.  Discovery of Frequent Episodes in Event Sequences , 1997, Data Mining and Knowledge Discovery.

[8]  RamakrishnanRaghu,et al.  Bottom-up computation of sparse and Iceberg CUBE , 1999 .

[9]  Raghu Ramakrishnan,et al.  Bottom-up computation of sparse and Iceberg CUBE , 1999, SIGMOD '99.

[10]  Joseph M. Hellerstein,et al.  An Interactive Framework for Data Cleaning and Transformation , 1999 .

[11]  Abraham Silberschatz,et al.  What Makes Patterns Interesting in Knowledge Discovery Systems , 1996, IEEE Trans. Knowl. Data Eng..

[12]  Roberto J. Bayardo,et al.  Efficiently mining long patterns from databases , 1998, SIGMOD '98.

[13]  Jiawei Han,et al.  Mining recurrent items in multimedia with progressive resolution refinement , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[14]  Kenneth A. Ross,et al.  Fast Computation of Sparse Datacubes , 1997, VLDB.

[15]  Surajit Chaudhuri,et al.  An overview of data warehousing and OLAP technology , 1997, SGMD.

[16]  Howard J. Hamilton,et al.  Efficient Attribute-Oriented Generalization for Knowledge Discovery from Large Databases , 1998, IEEE Trans. Knowl. Data Eng..

[17]  William S. Cleveland,et al.  Visualizing Data , 1993 .

[18]  Rajeev Motwani,et al.  Dynamic itemset counting and implication rules for market basket data , 1997, SIGMOD '97.

[19]  Jian Pei,et al.  Can we push more constraints into frequent pattern mining? , 2000, KDD '00.

[20]  Charu C. Aggarwal,et al.  A Tree Projection Algorithm for Generation of Frequent Item Sets , 2001, J. Parallel Distributed Comput..

[21]  Yasuhiko Morimoto,et al.  Computing Optimized Rectilinear Regions for Association Rules , 1997, KDD.

[22]  Thomas C. Redman,et al.  Data Quality Management and Technology , 1992 .

[23]  Mohammed J. Zaki Generating non-redundant association rules , 2000, KDD '00.

[24]  Kenneth A. Ross,et al.  Complex Aggregation at Multiple Granularities , 1998, EDBT.

[25]  Sridhar Ramaswamy,et al.  On the Discovery of Interesting Patterns in Association Rules , 1998, VLDB.

[26]  Ramakrishnan Srikant,et al.  Mining generalized association rules , 1995, Future Gener. Comput. Syst..

[27]  Tom M. Mitchell,et al.  Generalization as Search , 2002 .

[28]  Mehmed Kantardzic,et al.  Data-Mining Concepts , 2011 .

[29]  Vipin Kumar,et al.  Scalable parallel data mining for association rules , 1997, SIGMOD '97.

[30]  Heikki Mannila,et al.  A database perspective on knowledge discovery , 1996, CACM.

[31]  Heikki Mannila,et al.  Efficient Algorithms for Discovering Association Rules , 1994, KDD Workshop.

[32]  Gregory Piatetsky-Shapiro,et al.  Advances in Knowledge Discovery and Data Mining , 2004, Lecture Notes in Computer Science.

[33]  Giri Kumar Tayi,et al.  Enhancing data quality in data warehouse environments , 1999, CACM.

[34]  Veda C. Storey,et al.  A Framework for Analysis of Data Quality Research , 1995, IEEE Trans. Knowl. Data Eng..

[35]  Jiawei Han,et al.  Discovery of Multiple-Level Association Rules from Large Databases , 1995, VLDB.

[36]  Jiawei Han,et al.  Exploration of the power of attribute-oriented induction in data mining , 1995, KDD 1995.

[37]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[38]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[39]  Sridhar Ramaswamy,et al.  Cyclic association rules , 1998, Proceedings 14th International Conference on Data Engineering.

[40]  Sunita Sarawagi,et al.  Integrating association rule mining with relational database systems: alternatives and implications , 1998, SIGMOD '98.

[41]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD 2000.

[42]  Laks V. S. Lakshmanan,et al.  Exploratory mining and pruning optimizations of constrained associations rules , 1998, SIGMOD '98.

[43]  Ryszard S. Michalski,et al.  A Theory and Methodology of Inductive Learning , 1983, Artificial Intelligence.

[44]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[45]  Ramakrishnan Srikant,et al.  Mining quantitative association rules in large relational tables , 1996, SIGMOD '96.

[46]  Renée J. Miller,et al.  Association rules over interval data , 1997, SIGMOD '97.

[47]  Yasuhiko Morimoto,et al.  Data mining using two-dimensional optimized association rules: scheme, algorithms, and visualization , 1996, SIGMOD '96.

[48]  Gregory Piatetsky-Shapiro,et al.  Discovery, Analysis, and Presentation of Strong Rules , 1991, Knowledge Discovery in Databases.

[49]  Raymond T. Ng,et al.  Algorithms for Mining Distance-Based Outliers in Large Datasets , 1998, VLDB.

[50]  Joan Feigenbaum,et al.  Factorization in Experiment Generation , 1986, AAAI.

[51]  Jörg Rech,et al.  Knowledge Discovery in Databases , 2001, Künstliche Intell..

[52]  Srinivasan Parthasarathy,et al.  Parallel Algorithms for Discovery of Association Rules , 1997, Data Mining and Knowledge Discovery.

[53]  Sunita Sarawagi,et al.  Modeling multidimensional databases , 1997, Proceedings 13th International Conference on Data Engineering.

[54]  Jeffrey D. Ullman,et al.  Implementing data cubes efficiently , 1996, SIGMOD '96.

[55]  Jiawei Han,et al.  Efficient mining of partial periodic patterns in time series database , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[56]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[57]  Heikki Mannila,et al.  Finding interesting rules from large sets of discovered association rules , 1994, CIKM '94.

[58]  Hiroshi Motoda,et al.  Feature Selection for Knowledge Discovery and Data Mining , 1998, The Springer International Series in Engineering and Computer Science.

[59]  Richard Y. Wang,et al.  Anchoring data quality dimensions in ontological foundations , 1996, CACM.

[60]  Shamkant B. Navathe,et al.  Mining for strong negative associations in a large database of customer transactions , 1998, Proceedings 14th International Conference on Data Engineering.

[61]  Jeffrey F. Naughton,et al.  An array-based algorithm for simultaneous multidimensional aggregates , 1997, SIGMOD '97.

[62]  Shamkant B. Navathe,et al.  An Efficient Algorithm for Mining Association Rules in Large Databases , 1995, VLDB.

[63]  Dorian Pyle,et al.  Data Preparation for Data Mining , 1999 .

[64]  Rajeev Motwani,et al.  Scalable Techniques for Mining Causal Structures , 1998, Data Mining and Knowledge Discovery.

[65]  Sunita Sarawagi,et al.  Integrating Association Rule Mining with Relational Database Systems: Alternatives and Implications , 1998, SIGMOD '98.

[66]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[67]  Nimrod Megiddo,et al.  Discovery-Driven Exploration of OLAP Data Cubes , 1998, EDBT.

[68]  Jiawei Han,et al.  Attribute-Oriented Induction in Relational Databases , 1991, Knowledge Discovery in Databases.

[69]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[70]  Rajeev Motwani,et al.  Beyond market baskets: generalizing association rules to correlations , 1997, SIGMOD '97.

[71]  Tom M. Mitchell,et al.  Version Spaces: A Candidate Elimination Approach to Rule Learning , 1977, IJCAI.

[72]  Elena Baralis,et al.  Designing Templates for Mining Association Rules , 2004, Journal of Intelligent Information Systems.

[73]  Tomasz Imielinski,et al.  MSQL: A Query Language for Database Mining , 1999, Data Mining and Knowledge Discovery.

[74]  Giuseppe Psaila,et al.  A New SQL-like Operator for Mining Association Rules , 1996, VLDB.

[75]  Christos Faloutsos,et al.  Ratio Rules: A New Paradigm for Fast, Quantifiable Data Mining , 1998, VLDB.

[76]  Jiawei Han,et al.  Data-Driven Discovery of Quantitative Rules in Relational Databases , 1993, IEEE Trans. Knowl. Data Eng..

[77]  Jeffrey F. Naughton,et al.  On the Computation of Multidimensional Aggregates , 1996, VLDB.

[78]  Hannu Toivonen,et al.  Sampling Large Databases for Association Rules , 1996, VLDB.

[79]  Wei Wang,et al.  DMQL: A Data Mining Query Language for Relational Databases , 2007 .

[80]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.

[81]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[82]  Rajeev Motwani,et al.  Computing Iceberg Queries Efficiently , 1998, VLDB.

[83]  Laks V. S. Lakshmanan,et al.  Efficient mining of constrained correlated sets , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[84]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[85]  Jiawei Han,et al.  Maintenance of discovered association rules in large databases: an incremental updating technique , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[86]  Erhard Rahm,et al.  Data Cleaning: Problems and Current Approaches , 2000, IEEE Data Eng. Bull..

[87]  Ambuj K. Singh,et al.  Efficient view maintenance at data warehouses , 1997, SIGMOD '97.

[88]  Jian Pei,et al.  CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets , 2000, ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

[89]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[90]  Jiawei Han,et al.  Metarule-Guided Mining of Multi-Dimensional Association Rules Using Data Cubes , 1997, KDD.

[91]  Philip S. Yu,et al.  An effective hash-based algorithm for mining association rules , 1995, SIGMOD '95.

[92]  Erik Thomsen,et al.  OLAP Solutions - Building Multidimensional Information Systems , 1997 .

[93]  Hamid Pirahesh,et al.  Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals , 1996, Data Mining and Knowledge Discovery.

[94]  Ramakrishnan Srikant,et al.  Mining Association Rules with Item Constraints , 1997, KDD.