Optimized humanoid walking with soft soles

In order to control more efficiently the feet-ground interaction of humanoid robots during walking, we investigate adding outer soft (i.e. compliant) soles to the feet. The deformation subsequent to the contact of the soles with the ground is taken into account using a new walking pattern generator and deformation estimator. This novel humanoid walking approach ensures that the desired zero moment point for stability requirement is fulfilled. We validate our new controller using the HRP-4 humanoid robot performing walking experiments with and without the estimator. Also, to test the robustness of our approach and to obtain low-energy walking, we performed different walking motions.

[1]  Marc H. Raibert,et al.  Legged robots , 1986, CACM.

[2]  Fethi Ben Ouezdou,et al.  Dynamic walk of a bipedal robot having flexible feet , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[3]  Christian Duriez,et al.  Realistic haptic rendering of interacting deformable objects in virtual environments , 2008, IEEE Transactions on Visualization and Computer Graphics.

[4]  Shuuji Kajita,et al.  International Journal of Humanoid Robotics c ○ World Scientific Publishing Company An Analytical Method on Real-time Gait Planning for a Humanoid Robot , 2022 .

[5]  Morten Bro-Nielsen,et al.  Real‐time Volumetric Deformable Models for Surgery Simulation using Finite Elements and Condensation , 1996, Comput. Graph. Forum.

[6]  Giovanni De Magistris,et al.  Design of optimized soft soles for humanoid robots , 2017, Robotics Auton. Syst..

[7]  Abderrahmane Kheddar,et al.  Humanoid Robot Locomotion and Manipulation Step Planning , 2012, Adv. Robotics.

[8]  Andrei Herdt,et al.  Online Walking Motion Generation with Automatic Footstep Placement , 2010, Adv. Robotics.

[9]  Marko B. Popovic,et al.  Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications , 2005, Int. J. Robotics Res..

[10]  Byung Kook Kim,et al.  Energy-Efficient Gait Planning and Control for Biped Robots Utilizing the Allowable ZMP Region , 2014, IEEE Transactions on Robotics.

[11]  Pierre-Brice Wieber,et al.  Trajectory Free Linear Model Predictive Control for Stable Walking in the Presence of Strong Perturbations , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[12]  F. Jourdan,et al.  A Gauss-Seidel like algorithm to solve frictional contact problems , 1998 .

[13]  Fumio Kanehiro,et al.  Humanoid robot HRP-2 , 2008, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[14]  Eiichi Yoshida,et al.  Multi-contact vertical ladder climbing with an HRP-2 humanoid , 2016, Auton. Robots.

[15]  Pierre-Brice Wieber On the stability of walking systems , 2002 .

[16]  Giovanni De Magistris,et al.  A humanoid walking pattern generator for sole design optimization , 2015, 2015 International Conference on Advanced Robotics (ICAR).

[17]  Giovanni De Magistris,et al.  Humanoid walking with compliant soles using a deformation estimator , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Christian Rey,et al.  The finite element method in solid mechanics , 2014 .

[19]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[20]  Shuuji Kajita,et al.  An Analytical Method for Real-Time Gait Planning for Humanoid Robots , 2006, Int. J. Humanoid Robotics.

[21]  Shuuji Kajita,et al.  A Biped Pattern Generation Allowing Immediate Modification of Foot Placement in Real-time , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[22]  Atsuo Takanishi,et al.  Multisensor foot mechanism with shock absorbing material for dynamic biped walking adapting to unknown uneven surfaces , 1996, 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems (Cat. No.96TH8242).

[23]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[24]  David A. Winter,et al.  Human balance and posture control during standing and walking , 1995 .

[25]  Shuuji Kajita,et al.  Legged Robots , 2008, Springer Handbook of Robotics.