Gallium nitride devices for power electronic applications

Recent success with the fabrication of high-performance GaN-on-Si high-voltage HFETs has made this technology a contender for power electronic applications. This paper discusses the properties of GaN that make it an attractive alternative to established silicon and emerging SiC power devices. Progress in development of vertical power devices from bulk GaN is reviewed followed by analysis of the prospects for GaN-on-Si HFET structures. Challenges and innovative solutions to creating enhancement-mode power switches are reviewed.

[1]  Hiroshi Kambayashi,et al.  Over 100 A operation normally-off AlGaN/GaN hybrid MOS-HFET on Si substrate with high-breakdown voltage , 2010 .

[2]  P. Campbell,et al.  Gallium arsenide Schottky power rectifiers , 1985, IEEE Transactions on Electron Devices.

[3]  Tetsu Kachi,et al.  GaN Power Switching Devices for Automotive Applications , 2009 .

[4]  B. J. Baliga,et al.  Planar Nearly Ideal Edge-Termination Technique for GaN Devices , 2011, IEEE Electron Device Letters.

[5]  B. J. Baliga Silicon Carbide Power Devices , 2005 .

[6]  Jiang Li,et al.  A Novel GaN Device with Thin AlGaN/GaN Heterostructure for High-power Applications , 2006 .

[7]  B. J. Baliga,et al.  Silicon-carbide high-voltage (400 V) Schottky barrier diodes , 1992, IEEE Electron Device Letters.

[8]  P. Friedrichs,et al.  Static and Dynamic Characteristics of 4H-SiC JFETs Designed for Different Blocking Categories , 2000 .

[9]  F. Ren,et al.  Design of edge termination for GaN power Schottky diodes , 2005 .

[10]  Y. Uemoto,et al.  AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure , 2005, IEEE Transactions on Electron Devices.

[11]  Yuki Niiyama,et al.  Enhancement-mode GaN hybrid MOS-HFETs on Si substrates with Over 70 A operation , 2009, 2009 21st International Symposium on Power Semiconductor Devices & IC's.

[12]  M. Van Hove,et al.  Low On-Resistance High-Breakdown Normally Off AlN/GaN/AlGaN DHFET on Si Substrate , 2010, IEEE Electron Device Letters.

[13]  P. Friedrichs,et al.  Dynamic characteristics of high voltage 4H-SiC vertical JFETs , 1999, 11th International Symposium on Power Semiconductor Devices and ICs. ISPSD'99 Proceedings (Cat. No.99CH36312).

[14]  J. D. del Alamo,et al.  Mechanisms for Electrical Degradation of GaN High-Electron Mobility Transistors , 2006, 2006 International Electron Devices Meeting.

[15]  T. Kachi,et al.  A Vertical Insulated Gate AlGaN/GaN Heterojunction Field-Effect Transistor , 2007 .

[16]  W. Fulop,et al.  Calculation of avalanche breakdown voltages of silicon p-n junctions , 1967 .

[17]  B. Jayant Baliga,et al.  Fundamentals of Power Semiconductor Devices , 2008 .

[18]  E. Kohn,et al.  InAlN - A new barrier material for GaN-based HEMTs , 2007, 2007 International Workshop on Physics of Semiconductor Devices.

[19]  M. Shur,et al.  GaN-BASED POWER HIGH ELECTRON MOBILITY TRANSISTORS , 2003 .

[20]  A. G. Chynoweth,et al.  Uniform Silicon p‐n Junctions. II. Ionization Rates for Electrons , 1960 .

[21]  Y. Cordier,et al.  Demonstration of AlGaN/GaN High-Electron-Mobility Transistors Grown by Molecular Beam Epitaxy on Si(110) , 2008, IEEE Electron Device Letters.

[22]  T. Egawa,et al.  Buffer Thickness Contribution to Suppress Vertical Leakage Current With High Breakdown Field (2.3 MV/cm) for GaN on Si , 2011, IEEE Electron Device Letters.

[23]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[24]  S. Denbaars,et al.  Gallium-nitride-based materials for blue to ultraviolet optoelectronics devices , 1997, Proc. IEEE.

[25]  B. J. Baliga,et al.  Finite-Zone Argon Implant Edge Termination for High-Voltage GaN Schottky Rectifiers , 2011, IEEE Electron Device Letters.

[26]  J. Kuzmik,et al.  Power electronics on InAlN/(In)GaN: Prospect for a record performance , 2001, IEEE Electron Device Letters.

[27]  Yoshihiro Sato,et al.  GaN Power Transistors on Si Substrates for Switching Applications , 2010, Proceedings of the IEEE.

[28]  Daisuke Ueda,et al.  Recent advances in GaN transistors for future emerging applications , 2009 .

[29]  Xiang Gao,et al.  3000-V 4.3-$\hbox{m}\Omega \cdot \hbox{cm}^{2}$ InAlN/GaN MOSHEMTs With AlGaN Back Barrier , 2012, IEEE Electron Device Letters.

[30]  Kevin J. Chen,et al.  Schottky Source/Drain InAlN/AlN/GaN MISHEMT With Enhanced Breakdown Voltage , 2012, IEEE Electron Device Letters.

[31]  B. J. Baliga,et al.  Semiconductors for high‐voltage, vertical channel field‐effect transistors , 1982 .

[32]  Lester F. Eastman,et al.  Degradation characteristics of AlGaN-GaN high electron mobility transistors , 2001, 2001 IEEE International Reliability Physics Symposium Proceedings. 39th Annual (Cat. No.00CH37167).

[33]  B. J. Baliga Advanced Power MOSFET Concepts , 2010 .

[34]  Rong Zhang,et al.  Field-effect transistors based on two-dimensional materials for logic applications , 2013 .

[35]  Jerry L. Hudgins,et al.  - Power Semiconductor Devices , 2018, The Electric Power Engineering Handbook - Five Volume Set.

[36]  B. J. Baliga,et al.  Advanced High Voltage Power Device Concepts , 2011 .

[37]  B. Jayant Baliga,et al.  Advanced Power Rectifier Concepts , 2009 .

[38]  U. Mishra,et al.  AlGaN/GaN HEMTs-an overview of device operation and applications , 2002, Proc. IEEE.

[39]  B. J. Baliga,et al.  Evolution of MOS-bipolar power semiconductor technology , 1988, Proc. IEEE.

[40]  Umesh K. Mishra,et al.  AlGaN/GaN current aperture vertical electron transistors with regrown channels , 2004 .