Analysis of high-speed impact problems in the aircraft industry

The high cost of the energy needed to propel aircraft and ground vehicles has meant that reducing the weight in these systems is vital in order to reduce operational costs. This factor has a significant influence on the design of structures in the aeronautical industry and more recently in others such as high-speed rail networks and road haulage. This is a particularly sensitive issue for the civil aviation industry, given that the cost of fuel is one of the main expenses incurred by passenger airlines. Bearing in mind that fuel represents up to 40% of the total weight of an aircraft, a reduction of its weight results in a concurrent reduction in the amount of fuel needed as well as a significant reduction of the gross weight taken into account.

[1]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Padula,et al.  Forces Generated by High Velocity Impact of Ice on a Rigid Structure , 2013 .

[3]  Martyn J Pavier,et al.  Experimental techniques for the investigation of the effects of impact damage on carbon-fibre composites , 1995 .

[4]  Magnus Langseth,et al.  A numerical model for bird strike of aluminium foam-based sandwich panels , 2006 .

[5]  W. Johnson,et al.  Plasticine modelled high velocity oblique impact and ricochet of long rods , 1982 .

[6]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[7]  Ramzi Othman,et al.  Experimental investigation of rubber ball impacts on aluminium plates , 2010 .

[8]  Peter Wriggers,et al.  Finite element modelling of orthotropic material behaviour in pneumatic membranes , 2001 .

[9]  Lakshmi S. Nizampatnam Models and methods for bird strike load predictions , 2007 .

[10]  Stephen J. Jones,et al.  High Strain-Rate Compression Tests on Ice , 1997 .

[11]  F. Haynes,et al.  Effect of Temperature on the Strength of Snow-Ice, , 1978 .

[12]  C. Navarro,et al.  Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates , 2008 .

[13]  Hyonny Kim,et al.  Compressive strength of ice at impact strain rates , 2007 .

[14]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[15]  Marcílio Alves,et al.  An experimental and numerical investigation on tyre impact , 2010 .

[16]  Robert E. Ball A computer program for the geometrically nonlinear static and dynamic analysis of arbitrarily loaded shells of revolution, theory and users manual , 1972 .

[17]  R. Othman,et al.  Experimental investigation of the kinematics of post-impact ice fragments , 2011 .

[18]  S. Nemat-Nasser On finite deformation elasto-plasticity , 1982 .

[19]  K. Fujii,et al.  Impact perforation behavior of CFRPs using high-velocity steel sphere , 2002 .

[20]  D. C. Drucker,et al.  Soil mechanics and plastic analysis or limit design , 1952 .

[21]  H. Sekine,et al.  Numerical simulation of hypervelocity impacts of a projectile on laminated composite plate targets by means of improved SPH method , 2004 .

[22]  Frederick Stoll,et al.  FINITE ELEMENT SIMULATION OF fflGH-SPEED SOFT-BODY IMPACTS , 1997 .

[23]  Hyonny Kim,et al.  Modeling Hail Ice Impacts and Predicting Impact Damage Initiation in Composite Structures , 2000 .

[24]  R.A.W. Mines,et al.  Impact of aircraft rubber tyre fragments on aluminium alloy plates: II—Numerical simulation using LS-DYNA , 2007 .

[25]  Andrew J. Gunnion,et al.  Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge , 2008 .

[26]  Milan Jirásek,et al.  Inelastic Analysis of Structures , 2001 .

[27]  J. E. Adkins,et al.  Large elastic deformations and non-linear continuum mechanics , 1962 .

[28]  Yoshinori Watanabe,et al.  Modeling and analysis of bias-ply motorcycle tires , 1985 .

[29]  Alessandro Airoldi,et al.  Modelling of impact forces and pressures in Lagrangian bird strike analyses , 2006 .

[30]  John Morton,et al.  An assessment of the impact performance of CFRP reinforced with high-strain carbon fibres , 1986 .

[31]  D. Varas,et al.  Numerical Analysis of the Hydrodynamic Ram Phenomenon in Aircraft Fuel Tanks , 2012 .

[32]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[33]  Alastair Johnson,et al.  Modelling damage in composite aircraft panels under tyre rubber impacts , 2009 .

[34]  Marco Anghileri,et al.  Birdstrike: approaches to the analysis of impacts with penetration , 2005 .

[35]  Fei-Bin Hsiao,et al.  Simulation of a rigid plate hit by a cylindrical hemi-spherical tip-ended soft impactor , 2006 .

[36]  Mhamed Souli,et al.  Hydrodynamic Ram Analysis of Non-Exploding Projectile Impacting Water , 2005 .

[37]  Keith T. Kedward,et al.  Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels , 2003 .

[38]  Marco Anghileri,et al.  Fluid–structure interaction of water filled tanks during the impact with the ground , 2005 .

[39]  Yann Chuzel,et al.  Caractérisation expérimentale et simulation numérique d'impacts de glace à haute vitesse , 2009 .

[40]  Valentina Lopresto,et al.  Indentation and penetration of carbon fibre reinforced plastic laminates , 2003 .

[41]  Robert E. Ball,et al.  FY 73 Hydraulic Ram Studies. , 1974 .

[42]  Shaker A. Meguid,et al.  FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade , 2008 .

[43]  Abdel Magid Hamouda,et al.  An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft , 2011 .

[44]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[45]  M.-A. Lavoie,et al.  Validation of Available Approaches for Numerical Bird Strike Modeling Tools , 2013 .

[46]  Thomas J. Vasko,et al.  Robust Bird-Strike Modeling Based on ALE Formulation Using LS-DYNA , 2006 .

[47]  D. Kohlgrüber,et al.  Crash on Water: a Highly Multi-Physics Problem , 2004 .

[48]  Edwin L. Fasanella,et al.  Dynamic Crush Characterization of Ice , 2013 .

[49]  Edwin L. Fasanella,et al.  Test and Analysis Correlation of High Speed Impacts of Ice Cylinders , 2006 .

[50]  C. Sun,et al.  A simple model to predict residual velocities of thick composite laminates subjected to high velocity impact , 1996 .

[51]  R. Zaera,et al.  Damage in CFRPs due to low velocity impact at low temperature , 2005 .

[52]  A. Di Ilio,et al.  Composite materials response under low-velocity impact , 1984 .

[53]  D. Medina,et al.  The effects of projectile shape on laminated composite perforation , 1998 .

[54]  M. Shazly,et al.  High-Strain-Rate Compression Testing of Ice , 2013 .

[55]  L. W. Graham,et al.  Simulation of a Birdstrike Impact on Aircraft Canopy Material , 1988 .

[56]  Loading restrictions for the Blatz–Ko hyperelastic model—application to a finite element analysis , 2004 .

[57]  Bradley A. Lerch,et al.  High strain-rate behavior of ice under uniaxial compression , 2009 .

[58]  D. Cole Crack nucleation in polycrystalline ice , 1988 .

[59]  T. Børvik,et al.  Response of structures to planar blast loads - A finite element engineering approach , 2009 .

[60]  D. Varas,et al.  Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact , 2009 .

[61]  R. Zaera,et al.  High energy impact on woven laminates , 2003 .

[62]  Jang‐Kyo Kim,et al.  Impact Performance of a Woven Fabric CFRP Laminate , 1996, Engineering Plastics.

[63]  T. Vu-Khanh,et al.  Damage Extension in Carbon Fiber/PEEK Crossply Laminates under Low Velocity Impact , 1994 .

[64]  M. Souli ALE and Fluid-Structure Interaction Capabilities in LS-DYNA , 2002 .

[65]  Stephen W. Tsai,et al.  Anisotropic strength of composites , 1965 .

[66]  Leslie George Kappel Hydraulic ram shock phase effects on fuel cell survivability. , 1974 .

[67]  D. Medina,et al.  Three-dimensional simulations of impact induced damage in composite structures using the parallelized SPH method , 2000 .

[68]  Hideaki Kasano,et al.  Fracture behavior of CFRPs impacted by relatively high-velocity steel sphere , 2003 .

[69]  J. R. Stafford,et al.  SOME ASPECTS OF RUBBER COMPOSITE FINITE ELEMENT ANALYSIS , 1985 .

[70]  Francesco Marulo,et al.  Parametric study of a SPH high velocity impact analysis – A birdstrike windshield application , 2013 .

[71]  F. Chang,et al.  A Progressive Damage Model for Laminated Composites Containing Stress Concentrations , 1987 .

[72]  Numan Behlül Bektaş,et al.  An experimental investigation on the impact behavior of hybrid composite plates , 2010 .

[73]  John Morton,et al.  Impact perforation of carbon fibre reinforced plastic , 1990 .

[74]  L. W. Gold,et al.  On the elasticity of ice plates , 1988 .

[75]  Kelly S. Carney,et al.  A phenomenological high strain rate model with failure for ice , 2006 .

[76]  I. H. Marshall,et al.  The response of composite structures with pre-stress subject to low velocity impact damage , 2004 .

[77]  Yong Lu,et al.  Characterization of structural effects from above-ground explosion using coupled numerical simulation , 2006 .

[78]  Saeed Ziaei-Rad,et al.  Bird impact effects on different types of aircraft bubble windows using numerical and experimental methods , 2010 .

[79]  R. S. Birch,et al.  Impact of aircraft rubber tyre fragments on aluminium alloy plates: I—Experimental , 2007 .

[80]  D. Varas,et al.  Numerical modelling of the hydrodynamic ram phenomenon , 2009 .

[81]  William L. Ko,et al.  Application of Finite Elastic Theory to the Deformation of Rubbery Materials , 1962 .

[82]  Sebastian Heimbs,et al.  Review: Computational methods for bird strike simulations: A review , 2011 .

[83]  Fort Eustis,et al.  Comparison and Validation of Smooth Particle Hydrodynamic (SPH) and Coupled Euler Lagrange (CEL) Techniques for Modeling Hydrodynamic Ram , 2005 .

[84]  Matej Vesenjak,et al.  Fluid Models in LS-DYNA and Their Interaction With a Structure in Dynamic Simulations , 2005 .

[85]  E. Schulson,et al.  The brittle compressive fracture of ice , 1990 .

[86]  W. Cantwell,et al.  Comparison of the low and high velocity impact response of cfrp , 1989 .

[87]  G. Sih,et al.  Volume fraction effect of magnetoelectroelastic composite on enhancement and impediment of crack growth , 2005 .

[88]  Marco Anghileri,et al.  Birdstrike onto the Composite Intake of a Turbofan Engine , 2005 .

[89]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[90]  Dwight Patrick. Holm Hydraulic ram shock wave and cavitation effects on aircraft fuel cell survivability. , 1973 .

[91]  Damodar R. Ambur,et al.  Penetration simulation for uncontained engine debris impact on fuselage-like panels using LS-DYNA , 2000 .

[92]  John G Avery Design Manual for Impact Damage Tolerant Aircraft Structure , 1981 .

[93]  Thomas D Kim,et al.  Fabrication and testing of composite isogrid stiffened cylinder , 1999 .

[94]  Alain Combescure,et al.  Experimental study of high-velocity impact and fracture of ice , 2011 .

[95]  Yulong Li,et al.  The Numerical Simulation of a Bird-Impact on an Aircraft Windshield by Using the SPH Method , 2008 .

[96]  Gareth Appleby-Thomas,et al.  On the response of two commercially-important CFRP structures to multiple ice impacts , 2011 .

[97]  Kent D. Kimsey Numerical Simulation of Hydrodynamic Ram , 1980 .

[98]  Akhtar S. Khan,et al.  Continuum theory of plasticity , 1995 .

[99]  Ray W. Ogden,et al.  Nonlinear Elastic Deformations , 1985 .

[100]  Carlos Alberto Huertas-Ortecho Robust bird-strike modeling using LS-DYNA , 2006 .

[101]  Hyonny Kim,et al.  Damage resistance of single lap adhesive composite joints by transverse ice impact , 2010 .

[102]  Stephen J. Jones,et al.  The Confined Compressive Strength of Polycrystalline Ice , 1982 .

[103]  M.F.S.F. de Moura,et al.  Prediction of low velocity impact damage in carbon–epoxy laminates , 2002 .

[104]  Shaik Jeelani,et al.  Studies on the low-velocity impact response of woven hybrid composites , 2005 .

[105]  David Townsend,et al.  Failure of Fluid Dilled Structures Due To High Velocity Fragment Impact , 2003 .

[106]  Peter J. Torvik A SIMPLE THEORY FOR SHOCK PROPAGATION IN HOMOGENEOUS MIXTURES , 1970 .

[107]  Robert E. Ball Aircraft fuel tank vulnerability to hydraulic ram : modification of the Northrop finite element, computer code BR-1 to include fluid-structure interaction ; theory and user's manual for BR-1HR , 1974 .

[108]  J. Mazars APPLICATION DE LA MECANIQUE DE L'ENDOMMAGEMENT AU COMPORTEMENT NON LINEAIRE ET A LA RUPTURE DU BETON DE STRUCTURE , 1984 .

[109]  Kenneth Scott Bates Aircraft fuel tank entry wall-projectile interaction studies. , 1973 .

[110]  R. Olsson,et al.  Experimental and modelling study of hail impact on composite plates , 2009 .

[111]  D. Varas,et al.  Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact , 2011 .

[112]  M. Horstemeyer,et al.  Hydrodynamic modeling of impact craters in ice , 2010 .

[113]  Valentina Lopresto,et al.  Influence of material thickness on the response of carbon-fabric/epoxy panels to low velocity impact , 1999 .

[114]  Katsuyuki Suzuki,et al.  A comparative study of numerical simulations for fluid–structure interaction of liquid-filled tank during ship collision , 2007 .

[115]  Stephen R Hallett,et al.  Prediction of impact damage in composite plates , 2000 .

[116]  J. McGuirk,et al.  Experimental evaluation of geometric factors affecting damage mechanisms in carbon/epoxy plates , 2001 .

[117]  E. Schulson Brittle failure of ice , 2001 .

[118]  Marco Anghileri,et al.  A survey of numerical models for hail impact analysis using explicit finite element codes , 2005 .

[119]  Hyonny Kim,et al.  EXPERIMENTAL AND NUMERICAL ANALYSIS CORRELATION OF HAIL ICE IMPACTING COMPOSITE STRUCTURES , 1999 .

[120]  Theodore C. Carney,et al.  High-velocity impact of graphite/epoxy composite laminates , 1997 .

[121]  R. Mcqueen,et al.  Compression of Solids by Strong Shock Waves , 1958 .

[122]  Marco Anghileri,et al.  Multiple birdstrike analysis a survey of feasible techniques , 2004 .

[123]  R. Rivlin Large elastic deformations of isotropic materials IV. further developments of the general theory , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[124]  Wesley J. Cantwell,et al.  The influence of fibre stacking sequence on the high velocity impact response of CFRP , 1988 .

[125]  W. Johnson,et al.  High velocity oblique impact and ricochet mainly of long rod projectiles: An overview , 1982 .

[126]  W. Cantwell The influence of target geometry on the high velocity impact response of CFRP , 1988 .

[127]  Giuseppe Sala,et al.  Post-impact behaviour of aerospace composites for high-temperature applications: experiments and simulations , 1997 .

[128]  R. Banks,et al.  Experimental investigation of the penetration of a high-velocity gas jet through a liquid surface , 1963, Journal of Fluid Mechanics.

[129]  Jae-Hyun Kim,et al.  Application of the ALE technique for underwater explosion analysis of a submarine liquefied oxygen tank , 2008 .

[130]  A. Vlot,et al.  Ice ball impact on aircraft fuselage protection plates , 1995 .

[131]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[132]  John C. Brewer,et al.  Quadratic Stress Criterion for Initiation of Delamination , 1988 .

[133]  F. Larsson,et al.  Damage tolerance of a stitched carbon/epoxy laminate , 1997 .

[134]  Sia Nemat-Nasser,et al.  Decomposition of strain measures and their rates in finite deformation elastoplasticity , 1979 .

[135]  Stephen W. Tsai,et al.  A General Theory of Strength for Anisotropic Materials , 1971 .

[136]  Hasan Çallıoğlu,et al.  Impact Behavior of Hybrid Composite Plates , 2010 .

[137]  J. Petrovic Review Mechanical properties of ice and snow , 2003 .

[138]  A. Ruoff,et al.  Linear Shock‐Velocity‐Particle‐Velocity Relationship , 1967 .

[139]  Ahmed K. Noor,et al.  Advances and trends in the development of computational models for tires , 1985 .

[140]  L. A. Swanson,et al.  The hydrodynamic ram pressure generated by spherical projectiles , 2009 .

[141]  D. Varas,et al.  Numerical modeling of ice behavior under high velocity impacts , 2012 .

[142]  D. Varas,et al.  Numerical analysis of CFRP fluid-filled tubes subjected to high-velocity impact , 2013 .

[143]  C. M. Seddon,et al.  Preliminary analysis of fuel tank impact , 2004 .

[144]  V.P.W. Shim,et al.  An Experimental Study of Low Velocity Impact Damage in Woven Fiber Composites , 1998 .

[145]  David M. Cole,et al.  A Fracture Study of Ice Under High Strain Rate Loading , 2004 .

[146]  François Peyraut,et al.  Solution of large deformation contact problems with friction between Blatz-Ko hyperelastic bodies , 2003 .

[147]  James S Wilbeck,et al.  Impact Behavior of Low Strength Projectiles , 1978 .

[148]  R. Zaera,et al.  The effect of low temperatures on the intermediate and high velocity impact response of CFRPs , 2002 .