Progress towards the field deployment of coherent optical fiber systems

A description is given of the first demonstration of a coherent optical transmission system deployed in an operational network. The miniaturized external cavity laser and the automated endless polarization control scheme which made it possible to mount this demonstration are described in detail, together with specific system results. A discussion is presented of the possible field deployment of other coherent system options, based on FSK modulation of DFB and DBR lasers, and polarisation diversity reception. The considerable potential afforded by coherent techniques for meeting future network requirements is highlighted. The demonstrated advantages of greater power budget and wavelength selectivity, combined with the use of optical amplifier multiwavelength repeaters, make coherent techniques particularly relevant to the growing demand for greater transmission capacity, transparency, and network flexibility. An increasingly urgent need for robust coherent optical technology can thus be anticipated, for wideband transmission and passive routing, for both telecommunications and computer networks of the near future. >

[1]  A. Mooradian,et al.  Spectral characteristics of external-cavity controlled semiconductor lasers , 1980 .

[2]  Yoshihisa Yamamoto,et al.  Receiver performance evaluation of various digital optical modulation-demodulation systems in the 0.5-10 µm wavelength region , 1980 .

[3]  Yoshihisa Yamamoto,et al.  Coherent optical fiber transmission systems , 1981 .

[4]  Yoshihisa Yamamoto,et al.  Direct frequency modulation in AlGaAs semiconductor lasers , 1982 .

[5]  R. Wyatt,et al.  10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range , 1983 .

[6]  A. W. Nelson,et al.  Monolithic 1.5 μm hybrid DFB/DBR lasers with 5 nm tuning range , 1984 .

[7]  Katsumi Emura,et al.  Novel optical FSK heterodyne single filter detection system using a directly modulated DFB-laser diode , 1984 .

[8]  P. Henry Lightwave primer , 1985 .

[9]  Katsumi Emura,et al.  Realisation of flat FM response by directly modulating a phase tunable DFB laser diode , 1985 .

[10]  W. J. Devlin,et al.  High-power, low-threshold BH lasers operating at 1.52 μm grown entirely by MOVPE , 1985 .

[11]  D. J. Malyon,et al.  Semiconductor laser homodyne optical phase-locked-loop , 1986 .

[12]  F. Favre Design of asymmetric quarter-wave-shifted DFB semiconductor lasers , 1986 .

[13]  K. Iwashita,et al.  400 Mbit/s optical FSK transmission experiment over 270 km of single-mode fibre , 1986 .

[14]  A. Chraplyvy,et al.  Regimes of feedback effects in 1.5-µm distributed feedback lasers , 1986 .

[15]  G. Jacobsen,et al.  Theoretical analysis of heterodyne optical receivers for transmission systems using (semiconductor) lasers with nonnegligible linewidth , 1986 .

[16]  T. Hodgkinson Costas loop analysis for coherent optical receivers , 1986 .

[17]  Govind P. Agrawal Amplifier-induced crosstalk in multichannel coherent lightwave systems , 1987 .

[18]  Steven K. Korotky,et al.  Optical time-division multiplexing and demultiplexing in a multigigabit/second fibre transmission system , 1987 .

[19]  M C. Brain,et al.  Performance Requirements For Devices And Components For Field Application Of Coherent Optical Communication Systems , 1987, Other Conferences.

[20]  Yoshinori Namihira,et al.  Polarisation fluctuation in optical-fibre submarine cable under 8000 m deep sea environmental conditions , 1987 .

[21]  Yoshinori Namihira,et al.  Polarisation fluctuation of submarine-cabled single-mode optical fibres in ocean installation , 1987 .

[22]  G. R. Walker,et al.  Endless polarisation control using four fibre squeezers , 1987 .

[23]  T. G. Hodgkinson,et al.  Polarisation-insensitive heterodyne detection using polarisation scrambling , 1987 .

[24]  J. Mellis,et al.  Characteristics of fibre-coupled optical isolators at 1.15 mu m , 1988 .

[25]  S. Markatos,et al.  Optical fibre surface plasmon wave devices , 1988 .

[26]  Shu Yamamoto,et al.  First sea trial of FSK heterodyne optical transmission system using polarisation diversity , 1988 .

[27]  R. Olshansky,et al.  Design and performance of wideband subcarrier multiplexed lightwave systems , 1988 .

[28]  R. S. Vodhanel,et al.  Adaptive quantised feedback equalisation for FSK heterodyne transmission at 150 Mbit/s and 1 Gbit/s , 1988 .

[29]  Kazuro Kikuchi,et al.  Coherent Optical Fiber Communications , 1988 .

[30]  G. R. Hill A wavelength routing approach to optical communications networks , 1988, IEEE INFOCOM '88,Seventh Annual Joint Conference of the IEEE Computer and Communcations Societies. Networks: Evolution or Revolution?.

[31]  Shuntaro Yamazaki,et al.  Tunable optical heterodyne receiver for coherent FDM broadcasting systems , 1988 .

[32]  Paul W. Shumate,et al.  Progress in switching technology for the emerging broadband network , 1988, ICCC.

[33]  Reinhold Noe,et al.  Endless polarization control systems for coherent optics , 1988 .

[34]  P. Cochrane,et al.  Wavelength-routed optical networks using coherent transmission , 1988, IEEE International Conference on Communications, - Spanning the Universe..

[35]  R. P. Gnall,et al.  Continuously tunable 1.5μm multiple-quantum-well GaInAs/GaInAsP distributed-Bragg-reflector lasers , 1988 .

[36]  T. Numai,et al.  Eight-channel wavelength-division switching experiment using wide-tuning-range DFB LD filters , 1988 .

[37]  J. Mellis,et al.  Field demonstration of 565 Mbit/s DPSK coherent transmission system over 176 km of installed fibre , 1988 .

[38]  T. Okoshi,et al.  Effect of frequency offset in DPSK phase-diversity optical receivers , 1988 .

[39]  P. Cochrane,et al.  Future optical fiber transmission technology and networks , 1988, IEEE Communications Magazine.

[40]  J. Mellis,et al.  Miniature packaged external-cavity semiconductor laser with 50 GHz continuous electrical tuning range , 1988 .

[41]  R. C. Booth,et al.  Lithium niobate waveguide polarisation convertor , 1988 .

[42]  S. G. Menocal,et al.  AMI signal format for pattern-independent FSK heterodyne transmission and two channel crosstalk measurements , 1988 .

[43]  G. R. Walker,et al.  Rugged all-fibre endless polarisation controller , 1988 .

[44]  G. R. Walker,et al.  Endless polarisation control using an integrated optic lithium niobate device , 1988 .

[45]  M. J. Creaner,et al.  565 Mbit/s AMI FSK coherent system using commercial DFB lasers , 1989 .

[46]  J. Mellis Direct optical phase modulation in semiconductor laser amplifier , 1989 .

[47]  M. C. Brain,et al.  Coherent optical transmission at 565 Mbit/s through five cascaded photonic amplifiers , 1989 .

[48]  R. S. Vodhanel,et al.  Performance of an Erbium-Doped Fiber Amplifier in a 16-Channel Coherent Broadcast Network Experiment , 1989 .

[49]  M. J. Creaner,et al.  High-performance balanced dual-detector GaAs IC receiver for 565 Mbit/s optical heterodyne detection , 1989 .

[50]  M. C. Brain Coherent optical networks , 1989 .

[51]  S. Saito,et al.  Coherent optical fiber transmission systems , 1981 .