Glial Glycolysis Is Essential for Neuronal Survival in Drosophila.

[1]  M. Eddison,et al.  The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes , 2014, Front. Neurosci..

[2]  A. Brand,et al.  Gap Junction Proteins in the Blood-Brain Barrier Control Nutrient-Dependent Reactivation of Drosophila Neural Stem Cells , 2014, Developmental cell.

[3]  G. Robinson,et al.  Socially responsive effects of brain oxidative metabolism on aggression , 2014, Proceedings of the National Academy of Sciences.

[4]  M. Freeman,et al.  Neuron-Glia Interactions through the Heartless FGF Receptor Signaling Pathway Mediate Morphogenesis of Drosophila Astrocytes , 2014, Neuron.

[5]  P. Phelan,et al.  Innexins Ogre and Inx2 are required in glial cells for normal postembryonic development of the Drosophila central nervous system , 2013, Journal of Cell Science.

[6]  Chris P. Ponting,et al.  Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System , 2013, Cell reports.

[7]  S. Sprecher,et al.  In vitro imaging of primary neural cell culture from Drosophila , 2013, Nature Protocols.

[8]  F. Saudou,et al.  Vesicular Glycolysis Provides On-Board Energy for Fast Axonal Transport , 2013, Cell.

[9]  J. Littleton,et al.  Mutation of a NCKX Eliminates Glial Microdomain Calcium Oscillations and Enhances Seizure Susceptibility , 2013, The Journal of Neuroscience.

[10]  D. Attwell,et al.  Synaptic Energy Use and Supply , 2012, Neuron.

[11]  B. Ganetzky,et al.  A mutation in Drosophila Aldolase Causes Temperature-Sensitive Paralysis, Shortened Lifespan, and Neurodegeneration , 2012, Journal of neurogenetics.

[12]  Pierre J Magistretti,et al.  Sweet Sixteen for ANLS , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[13]  David Attwell,et al.  Oxidative Phosphorylation, Not Glycolysis, Powers Presynaptic and Postsynaptic Mechanisms Underlying Brain Information Processing , 2012, The Journal of Neuroscience.

[14]  Pierre J. Magistretti,et al.  Oligodendroglia metabolically support axons and contribute to neurodegeneration , 2012, Nature.

[15]  C. Klämbt,et al.  Kinesin Heavy Chain Function in Drosophila Glial Cells Controls Neuronal Activity , 2012, The Journal of Neuroscience.

[16]  Jens Frahm,et al.  Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity , 2012, Nature.

[17]  C. Klämbt,et al.  The regulation of glial-specific splicing of Neurexin IV requires HOW and Cdk12 activity , 2012, Development.

[18]  M. Pasco,et al.  High Sugar-Induced Insulin Resistance in Drosophila Relies on the Lipocalin Neural Lazarillo , 2012, PloS one.

[19]  C. Betsholtz,et al.  Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. , 2011, Developmental cell.

[20]  P. Carmeliet,et al.  The Neurovascular Link in Health and Disease: Molecular Mechanisms and Therapeutic Implications , 2011, Neuron.

[21]  Erin L. Doyle,et al.  Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting , 2011, Nucleic acids research.

[22]  P. Magistretti,et al.  Astrocyte–neuron metabolic relationships: for better and for worse , 2011, Trends in Neurosciences.

[23]  B. Barres,et al.  Pericytes are required for blood–brain barrier integrity during embryogenesis , 2010, Nature.

[24]  Bengt R. Johansson,et al.  Pericytes regulate the blood–brain barrier , 2010, Nature.

[25]  Berislav V. Zlokovic,et al.  Pericytes Control Key Neurovascular Functions and Neuronal Phenotype in the Adult Brain and during Brain Aging , 2010, Neuron.

[26]  K. Willecke,et al.  Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32 , 2010, Glia.

[27]  I. Meinertzhagen,et al.  The functional organisation of glia in the adult brain of Drosophila and other insects , 2010, Progress in Neurobiology.

[28]  Klaus-Armin Nave,et al.  Myelination and the trophic support of long axons , 2010, Nature Reviews Neuroscience.

[29]  Elizabeth J. Rideout,et al.  Control of Sexual Differentiation and Behavior by the doublesex gene in Drosophila melanogaster , 2010, Nature Neuroscience.

[30]  Masahiko Watanabe,et al.  The trehalose transporter 1 gene sequence is conserved in insects and encodes proteins with different kinetic properties involved in trehalose import into peripheral tissues. , 2010, Insect biochemistry and molecular biology.

[31]  Tzumin Lee,et al.  Organization and Postembryonic Development of Glial Cells in the Adult Central Brain of Drosophila , 2008, The Journal of Neuroscience.

[32]  E. Hafen,et al.  Reduction of DILP2 in Drosophila Triages a Metabolic Phenotype from Lifespan Revealing Redundancy and Compensation among DILPs , 2008, PloS one.

[33]  D. Kretzschmar,et al.  Swiss Cheese, a Protein Involved in Progressive Neurodegeneration, Acts as a Noncanonical Regulatory Subunit for PKA-C3 , 2008, The Journal of Neuroscience.

[34]  M. Bundgaard,et al.  All vertebrates started out with a glial blood‐brain barrier 4–500 million years ago , 2008, Glia.

[35]  C. Lehner,et al.  Cell-Type-Specific TEV Protease Cleavage Reveals Cohesin Functions in Drosophila Neurons , 2008, Developmental cell.

[36]  B. Zlokovic The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders , 2008, Neuron.

[37]  C. Klämbt,et al.  Organization and Function of the Blood–Brain Barrier in Drosophila , 2008, The Journal of Neuroscience.

[38]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[39]  P. Magistretti,et al.  Activity‐dependent regulation of energy metabolism by astrocytes: An update , 2007, Glia.

[40]  Roger A Hoskins,et al.  The Carnegie Protein Trap Library: A Versatile Tool for Drosophila Developmental Studies , 2007, Genetics.

[41]  R. Hoskins,et al.  Exploring Strategies for Protein Trapping in Drosophila , 2007, Genetics.

[42]  R. Maeda,et al.  An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases , 2007, Proceedings of the National Academy of Sciences.

[43]  E. Hansson,et al.  Astrocyte–endothelial interactions at the blood–brain barrier , 2006, Nature Reviews Neuroscience.

[44]  U. Gaul,et al.  moody Encodes Two GPCRs that Regulate Cocaine Behaviors and Blood-Brain Barrier Permeability in Drosophila , 2005, Cell.

[45]  R. Fetter,et al.  GPCR Signaling Is Required for Blood-Brain Barrier Formation in Drosophila , 2005, Cell.

[46]  B. Jones,et al.  Transcriptional regulation of the Drosophila glial gene repo , 2005, Mechanisms of Development.

[47]  M. Ashburner,et al.  The DrosDel Collection , 2004, Genetics.

[48]  Gyunghee Lee,et al.  Hemolymph Sugar Homeostasis and Starvation-Induced Hyperactivity Affected by Genetic Manipulations of the Adipokinetic Hormone-Encoding Gene in Drosophila melanogaster , 2004, Genetics.

[49]  Feng Chen,et al.  A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac , 2004, Nature Genetics.

[50]  Ronald L. Davis,et al.  Spatiotemporal Rescue of Memory Dysfunction in Drosophila , 2003, Science.

[51]  J. Schulte,et al.  Gliotactin, a novel marker of tricellular junctions, is necessary for septate junction development in Drosophila , 2003, The Journal of cell biology.

[52]  X. Morin,et al.  A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[53]  S. D. Carlson,et al.  Blood barriers of the insect. , 2000, Annual review of entomology.

[54]  Clive N Svendsen,et al.  Leukocyte Infiltration, Neuronal Degeneration, and Neurite Outgrowth after Ablation of Scar-Forming, Reactive Astrocytes in Adult Transgenic Mice , 1999, Neuron.

[55]  K. J. Sepp,et al.  Conversion of lacZ enhancer trap lines to GAL4 lines using targeted transposition in Drosophila melanogaster. , 1999, Genetics.

[56]  K. Zahs Heterotypic coupling between glial cells of the mammalian central nervous system , 1998 .

[57]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[58]  P. Magistretti,et al.  Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Tsacopoulos,et al.  Glial cells transform glucose to alanine, which fuels the neurons in the honeybee retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  R. Gebhardt,et al.  Glycogen in astrocytes: possible function as lactate supply for neighboring cells , 1993, Brain Research.

[61]  M. Tsacopoulos,et al.  Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[62]  S. Mukerji,et al.  Lactate release from cultured astrocytes and neurons: A comparison , 1988, Glia.

[63]  R. Janzer,et al.  Astrocytes induce blood–brain barrier properties in endothelial cells , 1987, Nature.

[64]  S. Friedman Treholose Regulation, One Aspect of Metabolic Homeostasis , 1978 .