LOW-COST MULTI-DIMENSIONAL GAUSSIAN PROCESS WITH APPLICATION TO UNCERTAINTY QUANTIFICATION

Computer codes simulating physical systems often have responses that consist of a set of distinct outputs that evolve in space and time and depend on many uncertain input parameters. The high dimensional nature of these computer codes makes the computations of Gaussian process (GP)-based emulators infeasible, even for a small number of simulation runs. In this paper we develop a covariance function for the GP to explicitly treat the covariance among distinct output variables, input variables, spatial domain, and temporal domain and also allows for Bayesian inference at low computational cost. We base our analysis on a modified version of the linear model of coregionalization (LMC). The proper use of the conditional representation of the multivariate output and the separable model for different domains leads to a Kronecker product representation of the covariance matrix. Moreover, we introduce a nugget to the model which leads to better statistical properties (regarding predictive accuracy) of the multivariate GP without adding to the overall computational complexity. Finally, the prior specification of the LMC parameters allows for an efficient Markov chain Monte Carlo (MCMC) algorithm. Our approach is demonstrated on the Kraichnan-Orszag problem and Flow through randomly heterogeneous porous media.

[1]  A. O'Hagan,et al.  Bayesian inference for non‐stationary spatial covariance structure via spatial deformations , 2003 .

[2]  Thomas J. R. Hughes,et al.  Mixed Discontinuous Galerkin Methods for Darcy Flow , 2005, J. Sci. Comput..

[3]  Robert B. Gramacy,et al.  Cases for the nugget in modeling computer experiments , 2010, Statistics and Computing.

[4]  A. O'Hagan,et al.  Bayesian emulation of complex multi-output and dynamic computer models , 2010 .

[5]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[6]  Tatiyana V. Apanasovich,et al.  Cross-covariance functions for multivariate random fields based on latent dimensions , 2010 .

[7]  A. O'Hagan,et al.  Bayesian inference for the uncertainty distribution of computer model outputs , 2002 .

[8]  Robert B. Gramacy,et al.  Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .

[9]  Anders Logg,et al.  DOLFIN: a C++/Python Finite Element Library , 2012 .

[10]  Ilias Bilionis,et al.  Multi-output local Gaussian process regression: Applications to uncertainty quantification , 2012, J. Comput. Phys..

[11]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[12]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[13]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[14]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[15]  Klaus Obermayer,et al.  Gaussian Process Regression: Active Data Selection and Test Point Rejection , 2000, DAGM-Symposium.

[16]  Xin Sun,et al.  Bayesian Treed Multivariate Gaussian Process With Adaptive Design: Application to a Carbon Capture Unit , 2014, Technometrics.

[17]  Robert B. Gramacy,et al.  Adaptive Design and Analysis of Supercomputer Experiments , 2008, Technometrics.

[18]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[19]  Peter Muller,et al.  Alternatives to the Gibbs Sampling Scheme , 1992 .

[20]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[21]  Ilias Bilionis,et al.  Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification , 2013, J. Comput. Phys..

[22]  C. F. Sirmans,et al.  Nonstationary multivariate process modeling through spatially varying coregionalization , 2004 .

[23]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[24]  Michel Grzebyk,et al.  Multivariate Analysis and Spatial/Temporal Scales: Real and Complex Models , 2007 .

[25]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[26]  Knut-Andreas Lie,et al.  Modelling of Multiscale Structures in Flow Simulations for Petroleum Reservoirs , 2007, Geometric Modelling, Numerical Simulation, and Optimization.

[27]  Bani K. Mallick,et al.  Adaptive Bayesian Nonstationary Modeling for Large Spatial Datasets Using Covariance Approximations , 2014 .

[28]  H. Wackernagle,et al.  Multivariate geostatistics: an introduction with applications , 1998 .

[29]  J. Berger,et al.  Objective Bayesian Analysis of Spatially Correlated Data , 2001 .

[30]  James O. Berger,et al.  Uncertainty analysis and other inference tools for complex computer codes , 1998 .