Another Look at Downslope Windstorms. Part I: The Development of Analogs to Supercritical Flow in an Infinitely Deep, Continuously Stratified Fluid.

Abstract Numerical simulations are conducted to examine the role played by different amplification mechanisms in the development of large-amplitude mountain waves. It is shown that when the static stability has a two-layer structure, the nonlinear response can differ significantly from the solution to the equivalent linear problem when the parameter Nh/U is as small as 0.3. In the cases where the nonlinear waves are much larger than their linear counterparts, the highest stability is found in the lower layer and the flow resembles a hydraulic jump. Simulations of the 11 January 1972 Boulder windstorm are presented which suggest that the transition to supercritical flow, forced by the presence of a low-level inversion, plays an essential role in triggering the windstorm. The similarities between breaking waves and nonbreaking waves which undergo a transition to supercritical flow are discussed.