Stochastic coupling of two random Boolean networks

[1]  G. Abramson Long transients and cluster size in globally coupled maps , 2000, nlin/0010049.

[2]  N. Lahat,et al.  Changes in aldolase isoenzymes of adipose tissue induced by diabetes and ATP. , 1973, Nature: New biology.

[3]  D H Zanette,et al.  Synchronization of Kauffman networks. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  J. Rogers Chaos , 1876, Molecular Vibrations.

[5]  S. Morita LYAPUNOV ANALYSIS OF COLLECTIVE BEHAVIOR IN A NETWORK OF CHAOTIC ELEMENTS , 1997 .

[6]  J. J. Fox,et al.  From topology to dynamics in biochemical networks. , 2001, Chaos.

[7]  Henrik Flyvbjerg,et al.  Exact solution of Kauffman's model with connectivity one , 1988 .

[8]  R. Sherlock Analysis of the behaviour of Kauffman binary networks—I. State space description and the distribution of limit cycle lengths , 1979 .

[9]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[10]  Bernard Derrida,et al.  Multivalley structure in Kauffman's model: analogy with spin glasses , 1986 .

[11]  G. Parisi,et al.  Relevant elements, magnetization and dynamical properties in Kauffman networks: a numerical study , 1998 .

[12]  Burst synchronization in two thin-slice solid-state lasers incoherently coupled face to face. , 2005, Optics express.

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[15]  F. Jiménez-Morales,et al.  Cellular automaton model for the simulation of laser dynamics. , 2003 .

[16]  N. Lawandy,et al.  Laser action in strongly scattering media , 1994, Nature.

[17]  John D. Joannopoulos,et al.  Coupling, competition, and stability of modes in random lasers , 2004 .

[18]  M. L. Martins,et al.  Cellular automata model for gene networks , 1997 .

[19]  M. K. Ali,et al.  Chaos in a Simple Boolean Network , 2001 .

[20]  Cerdeira,et al.  Coherent-ordered transition in chaotic globally coupled maps. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[22]  G. Parisi,et al.  Closing probabilities in the Kauffman model: an annealed computation , 1995, cond-mat/9510137.

[23]  A. Batista,et al.  Lyapunov exponents of a lattice of chaotic maps with a power-law coupling , 2001 .

[24]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[25]  S. R. Lopes,et al.  Lyapunov spectrum and synchronization of piecewise linear map lattices with power-law coupling. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  S. Kauffman Homeostasis and Differentiation in Random Genetic Control Networks , 1969, Nature.

[27]  Françoise Fogelman-Soulié Frustration and stability in random boolean networks , 1984, Discret. Appl. Math..

[28]  Damián H. Zanette,et al.  SYNCHRONIZATION OF STOCHASTICALLY COUPLED CELLULAR AUTOMATA , 1998 .

[29]  G. Parisi,et al.  The modular structure of Kauffman networks , 1997, cond-mat/9708214.

[30]  Jack Heidel,et al.  Random Boolean network model exhibiting deterministic chaos. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.