Maternal Regulation of Infant Brain State

[1]  G. Barr,et al.  Unpredictable neonatal stress enhances adult anxiety and alters amygdala gene expression related to serotonin and GABA , 2014, Neuroscience.

[2]  Christian Büchel,et al.  The sleeping child outplays the adult's capacity to convert implicit into explicit knowledge , 2013, Nature Neuroscience.

[3]  D. Feldman The Spike-Timing Dependence of Plasticity , 2012, Neuron.

[4]  R. Sullivan,et al.  Effects of Early-Life Abuse Differ across Development: Infant Social Behavior Deficits Are Followed by Adolescent Depressive-Like Behaviors Mediated by the Amygdala , 2012, The Journal of Neuroscience.

[5]  R. Sullivan,et al.  The Development and Neurobiology of Infant Attachment and Fear , 2012, Developmental Neuroscience.

[6]  N. Matsuki,et al.  Synchronized spike waves in immature dentate gyrus networks , 2012, The European journal of neuroscience.

[7]  A. Sirota,et al.  Early Gamma Oscillations Synchronize Developing Thalamus and Cortex , 2011, Science.

[8]  S. Moriceau,et al.  Rodent model of infant attachment learning and stress. , 2010, Developmental psychobiology.

[9]  Michael J. Jutras,et al.  Synchronous neural activity and memory formation , 2010, Current Opinion in Neurobiology.

[10]  J. Born,et al.  The memory function of sleep , 2010, Nature Reviews Neuroscience.

[11]  B. Peterson,et al.  Normal Development of Brain Circuits , 2010, Neuropsychopharmacology.

[12]  Donald M. Wilson,et al.  Behavioral Neuroscience , 2011 .

[13]  Giulio Tononi,et al.  Slow wave homeostasis and synaptic plasticity. , 2009, Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine.

[14]  I. Tarkka,et al.  Effects of nutritive and non-nutritive sucking on infant heart rate variability during the first 6 months of life. , 2007, Infant behavior & development.

[15]  Parker J. Holman,et al.  Enduring Effects of Infant Memories: Infant Odor-Shock Conditioning Attenuates Amygdala Activity and Adult Fear Conditioning , 2007, Biological Psychiatry.

[16]  S. Moriceau,et al.  Maternal attenuation of hypothalamic paraventricular nucleus norepinephrine switches avoidance learning to preference learning in preweanling rat pups , 2007, Hormones and Behavior.

[17]  G. Tononi,et al.  Sleep function and synaptic homeostasis. , 2006, Sleep medicine reviews.

[18]  G. Buzsáki Rhythms of the brain , 2006 .

[19]  L. Luo,et al.  Axon retraction and degeneration in development and disease. , 2005, Annual review of neuroscience.

[20]  S. Moriceau,et al.  Unique Neural Circuitry for Neonatal Olfactory Learning , 2004, The Journal of Neuroscience.

[21]  D. Katz,et al.  Cellular Mechanisms Regulating Activity-Dependent Release of Native Brain-Derived Neurotrophic Factor from Hippocampal Neurons , 2002, The Journal of Neuroscience.

[22]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[23]  M. Meaney,et al.  Development of adult ethanol preference and anxiety as a consequence of neonatal maternal separation in Long Evans rats and reversal with antidepressant treatment , 2001, Psychopharmacology.

[24]  Christopher S. Monk,et al.  Prenatal Neurobiological Development: Molecular Mechanisms and Anatomical Change , 2001, Developmental neuropsychology.

[25]  M. Meaney,et al.  Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. , 2001, Annual review of neuroscience.

[26]  M. Meaney,et al.  Variations in maternal care in infancy regulate the development of stress reactivity , 2000, Biological Psychiatry.

[27]  G. Aghajanian,et al.  Molecular control of locus coeruleus neurotransmission , 1999, Biological Psychiatry.

[28]  C. Shatz,et al.  Brain Waves and Brain Wiring: The Role of Endogenous and Sensory-Driven Neural Activity in Development , 1999, Pediatric Research.

[29]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[30]  C. Shatz Emergence of order in visual system development. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. R. Robinson,et al.  Milk as the proximal mechanism for behavioral change in the newborn , 1994, Acta paediatrica (Oslo, Norway : 1992). Supplement.

[32]  S. Foote,et al.  Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  S. Nakamura,et al.  Development and plasticity of the locus coeruleus: A review of recent physiological and pharmacological experimentation , 1990, Progress in Neurobiology.

[34]  R. Sullivan,et al.  Norepinephrine and learning-induced plasticity in infant rat olfactory system , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  S. Nakamura,et al.  Postnatal development of electrical activity in the locus ceruleus. , 1987, Journal of neurophysiology.

[36]  D. Lorenz Alimentary sleep satiety in suckling rats , 1986, Physiology & Behavior.

[37]  G. Lynch,et al.  Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation , 1986, Brain Research.

[38]  M. Hofer,et al.  Suckling in the rat: evidence for patterned behavior during sleep. , 1984, Behavioral neuroscience.

[39]  Martin H. Teicher,et al.  First suckling response of the newborn albino rat: the roles of olfaction and amniotic fluid. , 1978, Science.

[40]  M. Hofer,et al.  Evidence that maternal ventral skin substances promote suckling in infant rats , 1976, Physiology & Behavior.