Flatness-based boundary control of a nonlinear parabolic equation modelling a tubular reactor

A nonlinear parabolic equation modelling an isothermal tubular reactor in one space dimension is considered. The control acts at the boundary of the inflow. It is shown that the system is “flat” with the outflow concentration playing the role of a flat output. Hence, the concentration field throughout the reactor and the control can be parametrized using an infinite series expansion depending on the flat output and its derivatives. This series is shown to have a non-zero radius of convergence provided the flat output trajectory is chosen as a Gevrey-function of class two. A simulation result illustrates the usefulness of the approach in achieving finite-time transitions between stationary concentration profiles.

[1]  Maurice Gevrey,et al.  Sur la nature analytique des solutions des équations aux dérivées partielles. Premier mémoire , 1918 .

[2]  M. Fliess,et al.  Sur les systèmes non linéaires différentiellement plats , 1992 .

[3]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[4]  Pierre Rouchon,et al.  Controllability and motion planning for linear delay systems with an application to a flexible rod , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[5]  M. Fliess,et al.  Theory and Practice in the Motion Planning and Control of a Flexible Robot Arm Using Mikusiński Operators , 1997 .

[6]  Michel Fliess,et al.  Systèmes linéaires sur les opérateurs de Mikusinski et commande d'une poutre flexible , 1997 .

[7]  Pierre Rouchon,et al.  A distributed parameter approach to the control of a tubular reactor: a multivariable case , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[8]  M. Fliess,et al.  Commande de l'équation des télégraphistes et restauration active d'un signal , 1998 .

[9]  Philippe Martin,et al.  Motion planning for a class of partial differential equations with boundary control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[10]  J. Lévine,et al.  Are there New Industrial Perspectives in the Control of Mechanical Systems , 1999 .

[11]  Paul M. Frank,et al.  Advances in Control , 1999 .

[12]  Joachim Rudolph,et al.  Steering the deflection of a piezoelectric bender , 1999, 1999 European Control Conference (ECC).

[13]  Hugues Mounier,et al.  Tracking Control and π-Freeness of Infinite Dimensional Linear Systems , 1999 .

[14]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[15]  Joachim Rudolph,et al.  Randsteuerung von Wärmetauschern mit örtlich verteilten Parametern: Ein flachheitsbasierter Zugang (Boundary Control of Heat Exchangers with Spatially Distributed Parameters: A Flatness-Based Approach) , 2000 .