Localización topológica basada en visión par robots móviles

Por localización se entienden las técnicas que se encargan de solucionar el problema de determinar la posición de un robot en su entorno usando sus propios sensores. En este trabajo se presentará una técnica de localización que pretende aportar una nueva manera de localizar un robot equipado con una cámara en un entorno topológicamente estructurado mediante técnicas probabiĺısticas. Se mostrará su aplicación en entornos tan diferentes como espacios de oficinas o el campo de la Robocup, y se comprobará como esta técnica es capaz de adaptarse a las tareas que el robot ha de realizar en estos entornos.

[1]  Javier Ruiz-del-Solar,et al.  Integrated Self-Localization and Ball Tracking in the Four-Legged Robot Soccer League , 2004 .

[2]  Thomas Röfer,et al.  Vision-based fast and reactive monte-carlo localization , 2003, ICRA.

[3]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[4]  Jana Kosecka,et al.  Vision based topological Markov localization , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[5]  Wolfram Burgard,et al.  Robust vision-based localization by combining an image-retrieval system with Monte Carlo localization , 2005, IEEE Transactions on Robotics.

[6]  Peter Stone,et al.  Practical Vision-Based Monte Carlo Localization on a Legged Robot , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[7]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[8]  Luis Miguel Bergasa,et al.  Visually Augmented POMDP for Indoor Robot Navigation , 2003, Applied Informatics.

[9]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[10]  Thomas Röfer,et al.  Fast and Robust Edge-Based Localization in the Sony Four-Legged Robot League , 2003, RoboCup.

[11]  Javier Ruiz-del-Solar,et al.  SELF-LOCALIZATION AND BALL TRACKING FOR THE ROBOCUP 4-LEGGED LEAGUE , 2005 .

[12]  Alessandro Saffiotti,et al.  Fuzzy Self-Localization Using Natural Features in the Four-Legged League , 2004, RoboCup.

[13]  Illah R. Nourbakhsh,et al.  Topological robot localization by training a vision-based transition detector , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[14]  R. Simmons,et al.  Probabilistic Navigation in Partially Observable Environments , 1995 .

[15]  Bruce A. MacDonald,et al.  A comparison between extended kalman filtering and sequential monte carlo technique for simultaneous localisation and map-building. , 2002 .

[16]  François Charpillet,et al.  Robot Localization by Stochastic Vision Based Device , 2000 .

[17]  Wolfram Burgard,et al.  A Monte Carlo Algorithm for Multi-Robot Localization , 1999 .

[18]  Juan D. Tardós,et al.  Hierarchical SLAM: real-time accurate mapping of large environments , 2005, IEEE Transactions on Robotics.

[19]  Alessandro Saffiotti,et al.  Fuzzy landmark-based localization for a legged robot , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).