Difference Factorizations and Monotonicity in Inverse Medium Scattering for Contrasts with Fixed Sign on the Boundary

We generalize the factorization method for inverse medium scattering using a particular factorization of the difference of two far field operators. While the factorization method has been used so far mainly to identify the shape of a scatterer's support, we show that factorizations based on Dirichlet-to-Neumann operators can be used to compute bounds for numerical values of the medium on the boundary of its support. To this end, we generalize ideas from inside-outside duality to obtain a monotonicity principle that allows for alternative uniqueness proofs for particular inverse scattering problems (e.g., when obstacles are present inside the medium). This monotonicity principle indeed is our most important technical tool: It further directly shows that the boundary values of the medium's contrast function are uniquely determined by the corresponding far field operator. Our particular factorization of far field operators additionally implies that the factorization method rigorously characterizes the suppor...