Generalization of Higher Order SAC to Vector Output Boolean Functions
暂无分享,去创建一个
[1] Stafford E. Tavares,et al. On the Design of S-Boxes , 1985, CRYPTO.
[2] Oded Goldreich,et al. The bit extraction problem or t-resilient functions , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[3] Réjane Forré,et al. The Strict Avalanche Criterion: Spectral Properties of Boolean Functions and an Extended Definition , 1988, CRYPTO.
[4] Sheelagh Lloyd,et al. Counting Functions Satisfying a Higher Order Strict Avalanche Criterion , 1990, EUROCRYPT.
[5] Kaisa Nyberg,et al. Perfect Nonlinear S-Boxes , 1991, EUROCRYPT.
[6] Joos Vandewalle,et al. Boolean Functions Satisfying Higher Order Propagation Criteria , 1991, EUROCRYPT.
[7] Sheelagh Lloyd. Balance, Uncorrelatedness and the Strict Avalanche Criterion , 1993, Discret. Appl. Math..
[8] Jennifer Seberry,et al. Systematic generation of cryptographically robust S-boxes , 1993, CCS '93.
[9] J. Seberry. Highly nonlinear balanced Boolean functions satisfying high degree propagation criterion , 1993 .
[10] Thomas W. Cusick,et al. Boolean Functions Satisfying a Higher Order Strict Avalanche Criterion , 1994, EUROCRYPT.
[11] Jennifer Seberry,et al. Improving the Strict Avalanche Characteristics of Cryptographic Functions , 1994, Inf. Process. Lett..
[12] Serge Vaudenay,et al. Links Between Differential and Linear Cryptanalysis , 1994, EUROCRYPT.
[13] J. Seberry,et al. Relationships among nonlinearity criteria , 1994 .
[14] Luke O'Connor,et al. An Upper Bound on the Number of Functions Satisfying the Strict Avalanche Criterion , 1994, Information Processing Letters.
[15] Douglas R. Stinson,et al. Orthogonal Arrays, Resilient Functions, Error-Correcting Codes, and Linear Programming Bounds , 1996, SIAM J. Discret. Math..
[16] H. Niederreiter,et al. Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .
[17] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .