Generalization of Higher Order SAC to Vector Output Boolean Functions

S-boxes (vector output Boolean functions) should satisfy cryptographic criteria even if some input bits (say, k bits) are kept constant. However, this kind of security has been studied only for scalar output Boolean functions. SAC(k) is a criterion for scalar output Boolean functions of this type. This paper studies a generalization of SAC(k) to vector output Boolean functions as the first step toward the security of block ciphers against attacks which keep some input bits constant. We show the existence, bounds and enumeration of vector Boolean functions which satisfy the generalized SAC(k). A design method and examples are also presented.

[1]  Stafford E. Tavares,et al.  On the Design of S-Boxes , 1985, CRYPTO.

[2]  Oded Goldreich,et al.  The bit extraction problem or t-resilient functions , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[3]  Réjane Forré,et al.  The Strict Avalanche Criterion: Spectral Properties of Boolean Functions and an Extended Definition , 1988, CRYPTO.

[4]  Sheelagh Lloyd,et al.  Counting Functions Satisfying a Higher Order Strict Avalanche Criterion , 1990, EUROCRYPT.

[5]  Kaisa Nyberg,et al.  Perfect Nonlinear S-Boxes , 1991, EUROCRYPT.

[6]  Joos Vandewalle,et al.  Boolean Functions Satisfying Higher Order Propagation Criteria , 1991, EUROCRYPT.

[7]  Sheelagh Lloyd Balance, Uncorrelatedness and the Strict Avalanche Criterion , 1993, Discret. Appl. Math..

[8]  Jennifer Seberry,et al.  Systematic generation of cryptographically robust S-boxes , 1993, CCS '93.

[9]  J. Seberry Highly nonlinear balanced Boolean functions satisfying high degree propagation criterion , 1993 .

[10]  Thomas W. Cusick,et al.  Boolean Functions Satisfying a Higher Order Strict Avalanche Criterion , 1994, EUROCRYPT.

[11]  Jennifer Seberry,et al.  Improving the Strict Avalanche Characteristics of Cryptographic Functions , 1994, Inf. Process. Lett..

[12]  Serge Vaudenay,et al.  Links Between Differential and Linear Cryptanalysis , 1994, EUROCRYPT.

[13]  J. Seberry,et al.  Relationships among nonlinearity criteria , 1994 .

[14]  Luke O'Connor,et al.  An Upper Bound on the Number of Functions Satisfying the Strict Avalanche Criterion , 1994, Information Processing Letters.

[15]  Douglas R. Stinson,et al.  Orthogonal Arrays, Resilient Functions, Error-Correcting Codes, and Linear Programming Bounds , 1996, SIAM J. Discret. Math..

[16]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[17]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .