An Improving Densification in Spark Plasma Sintering Ultrafine-grained Y2O3 Transparent Ceramic by Particle Fracture and Rearrangement

Herein, we report a new strategy on an improving densification in spark plasma sintering (SPS) ultrafine-grained Y2O3 transparent ceramic using anisotropic-shaped nanorod powders. At the low temperature stage (<600°C), fracture and rearrangement of nanorod powders will appear which can further improve the initial density of particle compact and reduce the initial particle size. When the temperature reaches beyond 600°C, the sintering efficiency of nanorod powder compact will exceed that of the green body packed by spherical powders. The ceramic sample sintered at 1300°C from nanorods is transparent with ultra-fine grain and shows good optical and mechanical properties, while the corresponding ceramic from near-spherical nanocrystalline powders is not dense enough and opaque.

[1]  A. Khanra,et al.  A novel approach of synthesizing nano Y2O3 powders for the fabrication of submicron IR transparent ceramics , 2021 .

[2]  M. Boldin,et al.  IR-transparent MgO-Gd2O3 composite ceramics produced by self-propagating high-temperature synthesis and spark plasma sintering , 2021, Journal of Advanced Ceramics.

[3]  Xiaohong Sun,et al.  Dense ceramics with complex shape fabricated by 3D printing: A review , 2021, Journal of Advanced Ceramics.

[4]  Jiajie Li,et al.  Unveiling exceptional sinterability of ultrafine α-Al2O3 nanopowders , 2020, Journal of Materiomics.

[5]  G. Toci,et al.  Fabrication, microstructures, and optical properties of Yb:Lu2O3 laser ceramics from co-precipitated nano-powders , 2020, Journal of Advanced Ceramics.

[6]  A. Tolmachev,et al.  Effect of starting materials and sintering temperature on microstructure and optical properties of Y2O3:Yb3+ 5 at% transparent ceramics , 2020, Journal of Advanced Ceramics.

[7]  C. Bünger,et al.  Low temperature consolidation of hydroxyapatite-reduced graphene oxide nano-structured powders , 2020, Materials Advances.

[8]  D. He,et al.  Fast low-temperature densification of translucent bulk nanograin Gd2Zr2O7 ceramics with average grain size below 10 nm , 2020 .

[9]  Hongyu Yu,et al.  High performance of La-doped Y2O3 transparent ceramics , 2020, Journal of Advanced Ceramics.

[10]  D. He,et al.  A new method for the preparation of transparent Y2O3 nanocrystalline ceramic with an average grain size of 20 nm , 2020 .

[11]  Youfu Zhou,et al.  Red-emitting YAG: Ce, Mn transparent ceramics for warm WLEDs application , 2020, Journal of Advanced Ceramics.

[12]  S. Walley,et al.  The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals , 2019, Journal of Materials Science.

[13]  Mao Yang,et al.  A facile solvothermal method for high-quality Gd2Zr2O7 nanopowder preparation , 2018 .

[14]  Peng Liu,et al.  Fabrication and spectral properties of Dy:Y2O3 transparent ceramics , 2017 .

[15]  Shuting Peng,et al.  Transparent Sub-mircon Gd 2 Zr 2 O 7 Ceramic Prepared by Spark Plasma Sintering Using Nanocrystalline Powders , 2017 .

[16]  Peng Liu,et al.  Spark plasma sintering of Sm3+ doped Y2O3 transparent ceramics for visible light lasers , 2017 .

[17]  Q. Zeng,et al.  First-principles study of structural, mechanical, and thermodynamic properties of cubic Y2O3 under high pressure , 2017 .

[18]  Cheolwoo Park,et al.  Characteristics of Y2O3 transparent ceramics rapidly processed using spark plasma sintering , 2017 .

[19]  M. Barekat,et al.  Mechanical and optical properties of spark plasma sintered transparent Y2O3 ceramics , 2016 .

[20]  A. Rahbari,et al.  Low-pressure fabrication of IR-transparent Y2O3 via spark plasma sintering , 2016 .

[21]  Kui Liu,et al.  Determination of the compressive yield strength for nano-grained YAG transparent ceramic by XRD analysis , 2016 .

[22]  R. Razavi,et al.  Effect of sintering temperature on microstructural and optical properties of transparent yttria ceramics fabricated by spark plasma sintering , 2016 .

[23]  Dingyuan Tang,et al.  Transparent ceramics: Processing, materials and applications , 2013 .

[24]  Technik Bewegt,et al.  Transparent Ceramics , 2013, ADHESION ADHESIVES&SEALANTS.

[25]  D. He,et al.  High-pressure sintering mechanism of yttrium aluminum garnet (Y3Al5O12) transparent nanoceramics , 2012 .

[26]  Shenglin Jiang,et al.  Ab initio many-body study of the electronic and optical properties of MgAl2O4 spinel , 2012 .

[27]  Jian Yu,et al.  Light extinction by pores in AlON ceramics: the transmission properties , 2010 .

[28]  Shenglin Jiang,et al.  Yield Strength of Transparent MgAl2O4 Nano-Ceramic at High Pressure and Temperature , 2010, Nanoscale research letters.

[29]  J. Ballato,et al.  Synthesis, Processing, and Properties of Submicrometer-Grained Highly Transparent Yttria Ceramics , 2010 .

[30]  Zhe Zhao,et al.  Transparent MgAl2O4 ceramic produced by spark plasma sintering , 2009 .

[31]  A. Ikesue,et al.  Comparative high-resolution spectroscopy and emission dynamics of Nd-doped GSGG crystals and transparent ceramics , 2008 .

[32]  R. Chaim,et al.  Sintering and densification of nanocrystalline ceramic oxide powders: A review , 2008 .

[33]  Rolf Apetz,et al.  Transparent Alumina: A Light‐Scattering Model , 2003 .

[34]  K. Byrappa,et al.  Solution synthesis of hydroxyapatite designer particulates , 2002 .

[35]  G. K. WILLIAMSONt,et al.  X-RAY LINE BROADENING FROM FILED ALUMINIUM AND WOLFRAM* , 2002 .

[36]  Raphael Lavi,et al.  885 nm high-power diodes end-pumped Nd:YAG laser , 2001 .

[37]  S. Jackel,et al.  Thermally boosted pumping of neodymium lasers. , 2000, Applied optics.

[38]  M Katz,et al.  Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level. , 1999, Applied optics.

[39]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[40]  R. T. Pascoe,et al.  A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements , 1981 .

[41]  L. Gerward,et al.  Particle size and strain broadening in energy‐dispersive x‐ray powder patterns , 1976 .

[42]  B. Powell,et al.  Elastic Properties of Polycrystalline Yttrium Oxide, Dysprosium Oxide, Holmium Oxide, and Erbium Oxide: Room Temperature Measurements , 1969 .

[43]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .