A criterion for the affine equivalence of cell complexes inRd and convex polyhedra inRd+1
暂无分享,去创建一个
[1] Frank Harary,et al. Graph Theory , 2016 .
[2] G. C. Shephard. Spherical complexes and radial projections of polytopes , 1971 .
[3] Franz Aurenhammer,et al. Recognising Polytopical Cell Complexes and Constructing Projection Polyhedra , 1987, J. Symb. Comput..
[4] Herbert Edelsbrunner,et al. Finding Extreme Points in Three Dimensions and Solving the Post-Office Problem in the Plane , 1985, Inf. Process. Lett..
[5] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[6] R. Connelly,et al. A convex 3-complex not simplicially isomorphic to a strictly convex complex , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] J. Maxwell,et al. I.—On Reciprocal Figures, Frames, and Diagrams of Forces , 1870, Transactions of the Royal Society of Edinburgh.
[8] Franz Aurenhammer. A New Duality Result Concerning Voronoi Diagrams , 1986, ICALP.
[9] W. Blaschke. Vorlesungen über Differentialgeometrie , 1912 .
[10] Fred Supnick. On the Perspective Deformation of Polyhedra , 1948 .
[11] J. Maxwell,et al. XLV. On reciprocal figures and diagrams of forces , 1864 .
[12] H. Pollaczek-Geiringer,et al. W. Blaschke, Vorlesungen über Differentialgeometrie I. 2. Auflage (Grundlehren der math. Wiss. in Einzeldarstellungen, Bd. I). Verlag J. Springer, Berlin 1924 , 1925 .