Distribution-free Phase II triple EWMA control chart for joint monitoring the process location and scale parameters

[1]  William H. Woodall,et al.  A critique of a variety of “memory-based” process monitoring methods , 2021, Journal of Quality Technology.

[2]  S. C. Shongwe,et al.  Distribution-free mixed GWMA-CUSUM and CUSUM-GWMA Mann–Whitney charts to monitor unknown shifts in the process location , 2020, Commun. Stat. Simul. Comput..

[3]  William H. Woodall,et al.  The impracticality of homogeneously weighted moving average and progressive mean control chart approaches , 2021, Qual. Reliab. Eng. Int..

[4]  Zhi Song,et al.  A class of new nonparametric circular‐grid charts for signal classification , 2021, Qual. Reliab. Eng. Int..

[5]  Christos Koukouvinos,et al.  Nonparametric triple exponentially weighted moving average signed‐rank control chart for monitoring shifts in the process location , 2021, Qual. Reliab. Eng. Int..

[6]  Christos Koukouvinos,et al.  A sum of squares triple exponentially weighted moving average control chart , 2021, Qual. Reliab. Eng. Int..

[7]  Philippe Castagliola,et al.  Distribution‐free triple EWMA control chart for monitoring the process location using the Wilcoxon rank‐sum statistic with fast initial response feature , 2021, Qual. Reliab. Eng. Int..

[8]  Christos Koukouvinos,et al.  A nonparametric triple exponentially weighted moving average sign control chart , 2020, Qual. Reliab. Eng. Int..

[9]  Zhi Lin Chong,et al.  Simultaneous monitoring of origin and scale of a shifted exponential process with unknown and estimated parameters , 2020, Qual. Reliab. Eng. Int..

[10]  P. Castagliola,et al.  An EWMA-type chart based on signed ranks with exact run length properties , 2020 .

[11]  Christos Koukouvinos,et al.  The triple exponentially weighted moving average control chart , 2020 .

[12]  Chenglong Li,et al.  A new distribution-free Phase-I procedure for bi-aspect monitoring based on the multi-sample Cucconi statistic , 2020, Comput. Ind. Eng..

[13]  Zhi Song,et al.  An efficient approach of designing distribution-free exponentially weighted moving average schemes with dynamic fast initial response for joint monitoring of location and scale , 2020 .

[14]  Jean-Claude Malela-Majika,et al.  New distribution-free memory-type control charts based on the Wilcoxon rank-sum statistic , 2020 .

[15]  Michael B. C. Khoo,et al.  Some simplified Shewhart-type distribution-free joint monitoring schemes and its application in monitoring drinking water turbidity , 2020, Quality Engineering.

[16]  Michael B. C. Khoo,et al.  Comparisons of some distribution-free CUSUM and EWMA schemes and their applications in monitoring impurity in mining process flotation , 2019, Comput. Ind. Eng..

[17]  M. A. Graham,et al.  Nonparametric (distribution-free) control charts: An updated overview and some results , 2019, Quality Engineering.

[18]  M. A. Graham,et al.  Nonparametric Statistical Process Control , 2019 .

[19]  Amitava Mukherjee,et al.  A distribution-free Phase I monitoring scheme for subgroup location and scale based on the multi-sample Lepage statistic , 2019, Comput. Ind. Eng..

[20]  Nasir Abbas,et al.  Homogeneously weighted moving average control chart with an application in substrate manufacturing process , 2018, Comput. Ind. Eng..

[21]  Amitava Mukherjee,et al.  Optimal design of Shewhart-Lepage type schemes and its application in monitoring service quality , 2018, Eur. J. Oper. Res..

[22]  Peihua Qiu,et al.  Some perspectives on nonparametric statistical process control , 2018 .

[23]  Michael B. C. Khoo,et al.  Some distribution-free Lepage-type schemes for simultaneous monitoring of one-sided shifts in location and scale , 2018, Comput. Ind. Eng..

[24]  Muhammad Riaz,et al.  A progressive approach to joint monitoring of process parameters , 2018, Comput. Ind. Eng..

[25]  Abdul Haq,et al.  A New Nonparametric EWMA Control Chart for Monitoring Process Variability , 2017, Qual. Reliab. Eng. Int..

[26]  Amitava Mukherjee,et al.  A distribution-free phase-II CUSUM procedure for monitoring service quality , 2017 .

[27]  Zhonghua Li,et al.  A Cramér-von Mises test-based distribution-free control chart for joint monitoring of location and scale , 2017, Comput. Ind. Eng..

[28]  Eeva Maria Rapoo,et al.  Distribution‐free mixed cumulative sum‐exponentially weighted moving average control charts for detecting mean shifts , 2017, Qual. Reliab. Eng. Int..

[29]  Amitava Mukherjee,et al.  Distribution‐free Lepage Type Circular‐grid Charts for Joint Monitoring of Location and Scale Parameters of a Process , 2017, Qual. Reliab. Eng. Int..

[30]  Amitava Mukherjee,et al.  Distribution-free phase-II exponentially weighted moving average schemes for joint monitoring of location and scale based on subgroup samples , 2017 .

[31]  N. Balakrishnan,et al.  A Generally Weighted Moving Average Signed‐rank Control Chart , 2016, Qual. Reliab. Eng. Int..

[32]  Barry C. Arnold,et al.  A new approach for monitoring process variance , 2016 .

[33]  A. K. Mccracken,et al.  Control Charts for Simultaneous Monitoring of Parameters of a Shifted Exponential Distribution , 2015 .

[34]  Amitava Mukherjee,et al.  Distribution‐free Phase II CUSUM Control Chart for Joint Monitoring of Location and Scale , 2015, Qual. Reliab. Eng. Int..

[35]  Amitava Mukherjee,et al.  A New Distribution‐free Control Chart for Joint Monitoring of Unknown Location and Scale Parameters of Continuous Distributions , 2014, Qual. Reliab. Eng. Int..

[36]  Muhammad Riaz,et al.  Mixed Exponentially Weighted Moving Average–Cumulative Sum Charts for Process Monitoring , 2013, Qual. Reliab. Eng. Int..

[37]  A. K. McCracken,et al.  Control Charts for Joint Monitoring of Mean and Variance: An Overview , 2013 .

[38]  Amitava Mukherjee,et al.  Distribution-free exponentially weighted moving average control charts for monitoring unknown location , 2012, Comput. Stat. Data Anal..

[39]  Amitava Mukherjee,et al.  A Distribution‐free Control Chart for the Joint Monitoring of Location and Scale , 2012, Qual. Reliab. Eng. Int..

[40]  D. Apley Announcement from the Editor , 2012 .

[41]  Subha Chakraborti,et al.  A nonparametric exponentially weighted moving average signed-rank chart for monitoring location , 2011, Comput. Stat. Data Anal..

[42]  J. Gibbons,et al.  Nonparametric Statistical Inference , 2020, International Encyclopedia of Statistical Science.

[43]  Szu Hui Ng,et al.  Nonparametric CUSUM and EWMA Control Charts for Detecting Mean Shifts , 2010 .

[44]  Nandini Das,et al.  A New Non-Parametric Control Chart for Controlling Variability , 2008 .

[45]  Smiley W. Cheng,et al.  Single Variables Control Charts: an Overview , 2006, Qual. Reliab. Eng. Int..

[46]  Gemai Chen,et al.  An Extended EWMA Mean Chart , 2005 .

[47]  S. W. Roberts,et al.  Control Chart Tests Based on Geometric Moving Averages , 2000, Technometrics.

[48]  F. Gan Joint monitoring of process mean and variance using exponentially weighted moving average control charts , 1995 .

[49]  Amal K. Shamma,et al.  Development and Evaluation of Control Charts Using Double Exponentially Weighted Moving Averages , 1992 .

[50]  Raid W. Amin,et al.  A nonparametric exponentially weighted moving average control scheme , 1991 .

[51]  Y. Lepage A combination of Wilcoxon's and Ansari-Bradley's statistics , 1971 .

[52]  A. R. Ansari,et al.  Rank-Sum Tests for Dispersions , 1960 .

[53]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[54]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[55]  W. A. Shewhart,et al.  Quality control charts , 1926 .