Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments

Nitrogen–vacancy (NV) centers in diamond are generally recognized as highly promising as indefinitely stable highly efficient single-photon sources. We report an experimental quantification of the brightness, radiative decay rate, nonradiative decay rate and quantum efficiency of single NV centers in diamond nanocrystals. Our experiments show that the commonly observed large spread in fluorescence decay rates of NV centers in nanodiamond is inconsistent with the common explanation of large nanophotonic mode-density variations in the ultra-small high-index crystals at near-unity quantum efficiency. We report that NV centers in 25 nm nanocrystals are essentially insensitive to local density of optical states (LDOS) variations that we induce at a dielectric interface by using liquids to vary the refractive index, and propose that quantum efficiencies in such nanocrystals are widely distributed between 0 and 20%. For single NV centers in larger 100 nm nanocrystals, we show that decay rate changes can be reversibly induced by nanomechanically approaching a mirror to change the LDOS. Using this scanning mirror method, for the first time we report calibrated quantum efficiencies of NV centers, and show that different but nominally identical nanocrystals have widely distributed quantum efficiencies between 10 and 90%. Our measurements imply that nanocrystals that are to be assembled into hybrid photonic structures for cavity QED should first be individually screened to assess fluorescence properties in detail.

[1]  M. Iwanaga Photonic metamaterials: a new class of materials for manipulating light waves , 2012, Science and technology of advanced materials.

[2]  A. Koenderink,et al.  Gray-Tone Lithography Implementation of Drexhage's Method for Calibrating Radiative and Nonradiative Decay Constants of Fluorophores , 2012, 1301.3338.

[3]  A. Cleland,et al.  Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds , 2012, Proceedings of the National Academy of Sciences.

[4]  C. Santori,et al.  Coupling of nitrogen-vacancy centers to photonic crystal resonators in monocrystalline diamond , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[5]  M. Kociak,et al.  Spectrally and spatially resolved cathodoluminescence of nanodiamonds: local variations of the NV0 emission properties , 2012, Nanotechnology.

[6]  M. Lukin,et al.  A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. , 2011, Nature nanotechnology.

[7]  D. Bouwmeester,et al.  Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment , 2012 .

[8]  Daniel A. Lidar,et al.  Decoherence-protected quantum gates for a hybrid solid-state spin register , 2012, Nature.

[9]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[10]  Oliver Benson,et al.  Assembly of hybrid photonic architectures from nanophotonic constituents , 2011, Nature.

[11]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[12]  Pavel Ginzburg,et al.  Applications of two-photon processes in semiconductor photonic devices: invited review , 2011 .

[13]  Judith M. Dawes,et al.  Modification of spontaneous emission from nanodiamond colour centres on a structured surface , 2011 .

[14]  R. Chapman,et al.  Quantitative luminescence microscopy on Nitrogen-Vacancy Centres in diamond: Saturation effects under pulsed excitation , 2011 .

[15]  M. Frimmer,et al.  Scanning emitter lifetime imaging microscopy for spontaneous emission control. , 2011, Physical review letters.

[16]  Philippe Lalanne,et al.  Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. , 2011, Physical review letters.

[17]  P. Barclay,et al.  Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities , 2011, 1102.5372.

[18]  Shailesh Kumar,et al.  Controlled coupling of a single nitrogen-vacancy center to a silver nanowire. , 2010, Physical review letters.

[19]  Andrei Faraon,et al.  Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity , 2010, 1012.3815.

[20]  O. Benson,et al.  Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens , 2010, 1011.1822.

[21]  Hannes Bernien,et al.  Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond , 2010, 1010.1192.

[22]  W. Pfaff,et al.  Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system , 2010, 1008.4097.

[23]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[24]  Peter Lodahl,et al.  Strongly modified plasmon-matter interaction with mesoscopic quantum emitters , 2010, 1011.5669.

[25]  Yoshihisa Yamamoto,et al.  Single-photon Devices and Applications , 2010 .

[26]  S. Huant,et al.  “Deterministic” quantum plasmonics. , 2010, Nano letters.

[27]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[28]  S. Spillane,et al.  Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond , 2010, Nanotechnology.

[29]  S. Hughes,et al.  On‐chip single photon sources using planar photonic crystals and single quantum dots , 2010 .

[30]  J. Twamley,et al.  Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. , 2010, Nature nanotechnology.

[31]  L. Sapienza,et al.  Extraction of the β-factor for single quantum dots coupled to a photonic crystal waveguide , 2010, 1003.3346.

[32]  Pedro David Garcia,et al.  Cavity Quantum Electrodynamics with Anderson-Localized Modes , 2010, Science.

[33]  Paul V. Ruijgrok,et al.  Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium. , 2010, Optics express.

[34]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[35]  A. Koenderink Plasmon nanoparticle array waveguides for single photon and single plasmon sources. , 2009, Nano letters.

[36]  Aurélien Drezet,et al.  Near-field optical microscopy with a nanodiamond-based single-photon tip. , 2009, Optics express.

[37]  A. Barnard,et al.  Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale. , 2009, Nano letters.

[38]  D. Inglis,et al.  Five-nanometer diamond with luminescent nitrogen-vacancy defect centers. , 2009, Small.

[39]  Kurt Aulenbacher,et al.  Fluorescence and spin properties of defects in single digit nanodiamonds. , 2009, ACS nano.

[40]  Roman Kolesov,et al.  Wave–particle duality of single surface plasmon polaritons , 2009 .

[41]  Oliver Benson,et al.  Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.

[42]  W. Vos,et al.  Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states , 2008, 0808.3191.

[43]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[44]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[45]  Oliver Benson,et al.  One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator. , 2008, Nano letters.

[46]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[47]  C. Degen,et al.  Scanning magnetic field microscope with a diamond single-spin sensor , 2008, 0805.1215.

[48]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[49]  A. Polman,et al.  Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model , 2007 .

[50]  T. Asano,et al.  Spontaneous-emission control by photonic crystals and nanocavities , 2007 .

[51]  C. Santori,et al.  Polarization-selective excitation of nitrogen vacancy centers in diamond , 2007, 0705.2006.

[52]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[53]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[54]  Harry A. Atwater,et al.  Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2 , 2006 .

[55]  Maria Kafesaki,et al.  Controlling the resonance of a photonic crystal microcavity by a near-field probe. , 2005, Physical review letters.

[56]  B C Buchler,et al.  Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror. , 2005, Physical review letters.

[57]  M. Orrit,et al.  Single-photon sources , 2005 .

[58]  D. Englund,et al.  Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. , 2005, Physical review letters.

[59]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[60]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[61]  Lukas Novotny,et al.  Single-molecule orientations determined by direct emission pattern imaging , 2004 .

[62]  Stephen G. Hickey,et al.  Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals , 2003 .

[63]  K. Vahala Optical microcavities , 2003, Nature.

[64]  Vahid Sandoghdar,et al.  Spontaneous emission of europium ions embedded in dielectric nanospheres. , 2002, Physical review letters.

[65]  Moungi G. Bawendi,et al.  On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots , 2002 .

[66]  P. Grangier,et al.  Nonclassical radiation from diamond nanocrystals , 2001, OFC 2001.

[67]  M. D. Dood,et al.  Luminescence quantum efficiency and local optical density of states in thin film ruby made by ion implantation , 2000 .

[68]  P. Grangier,et al.  Photon antibunching in the fluorescence of individual color centers in diamond. , 2000, Optics letters.

[69]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[70]  V. Sandoghdar,et al.  Optical microscopy using a single-molecule light source , 2000, Nature.

[71]  Jean-Michel Gérard,et al.  Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities , 1999 .

[72]  H. Urbach,et al.  Spontaneous emission from a dielectric slab , 1998 .

[73]  William L. Barnes,et al.  Modification of the spontaneous emission rate of Eu 3+ ions close to a thin metal mirror , 1997 .

[74]  Rudolf Sprik,et al.  Optical emission in periodic dielectrics , 1996 .

[75]  Polman,et al.  Measuring and modifying the spontaneous emission rate of erbium near an interface. , 1995, Physical review letters.

[76]  W. Moerner,et al.  Single molecule spectroscopy: maximum emission rate and saturation intensity , 1995 .

[77]  C. Tai,et al.  Dyadic green functions in electromagnetic theory , 1994 .

[78]  K. Drexhage Influence of a dielectric interface on fluorescence decay time , 1970 .