A cone restriction estimate using polynomial partitioning
暂无分享,去创建一个
[1] Endpoint bilinear restriction theorems for the cone, and some sharp null form estimates , 1999, math/9909066.
[2] Optimal multilinear restriction estimates for a class of hypersurfaces with curvature , 2016, Analysis & PDE.
[3] T. Tao. The Bochner-Riesz conjecture implies the restriction conjecture , 1999 .
[4] L. Guth,et al. On the Erdős distinct distances problem in the plane , 2015 .
[5] L. Guth. Restriction estimates using polynomial partitioning II , 2016, 1603.04250.
[6] T. Wol. A sharp bilinear cone restriction estimate , 2001 .
[7] J. Bourgain,et al. Bounds on Oscillatory Integral Operators Based on Multilinear Estimates , 2010, 1012.3760.
[8] T. Tao,et al. A bilinear approach to the restriction and Kakeya conjectures , 1998, math/9807163.
[9] L. Guth. A restriction estimate using polynomial partitioning , 2014, 1407.1916.
[10] J. Bourgain,et al. The proof of the $l^2$ Decoupling Conjecture , 2014, 1403.5335.
[11] Bartolomé Barceló Taberner. On the restriction of the Fourier transform to a conical surface , 1985 .
[12] Terence Tao,et al. On the multilinear restriction and Kakeya conjectures , 2005, math/0509262.
[13] The optimal trilinear restriction estimate for a class of hypersurfaces with curvature , 2016, 1603.02965.
[14] P. Alam. ‘Z’ , 2021, Composites Engineering: An A–Z Guide.
[15] Zeev Dvir,et al. On the size of Kakeya sets in finite fields , 2008, 0803.2336.