Large time well-posedness for a Dirac–Klein–Gordon system
暂无分享,去创建一个
Federico Cacciafesta | Long Meng | Anne-Sophie de Suzzoni | J'er'emy Sok | F. Cacciafesta | A. Suzzoni | Long Meng | J'er'emy Sok
[1] G. A. Watson. A treatise on the theory of Bessel functions , 1944 .
[2] K. Nakanishi,et al. Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation , 2005 .
[3] L. Fanelli,et al. Virial identity and weak dispersion for the magnetic Dirac equation , 2009, 0911.1287.
[4] F. Cacciafesta. Global small solutions to the critical radial Dirac equation with potential , 2011, 1103.0186.
[5] Jöran Bergh,et al. Interpolation Spaces: An Introduction , 2011 .
[6] L. Hörmander,et al. Remarks on the Klein-Gordon equation , 1987 .
[7] Seungly Oh,et al. The Kato-Ponce Inequality , 2013, 1303.5144.
[8] Dispersive estimates for principally normal pseudodifferential operators , 2004, math/0401234.
[9] N. Bournaveas,et al. Global well-posedness for the massless cubic Dirac equation , 2014, 1407.0655.
[10] K. Tsutaya,et al. Scattering theory for the Dirac equation with a non-local term , 2009, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[11] F. Cacciafesta,et al. A Dirac field interacting with point nuclear dynamics , 2017, Mathematische Annalen.
[12] S. Herr. The Cubic Dirac Equation: Small Initial Data in H 1 ( R 3 ) , 2014 .
[13] K. Nakanishi,et al. Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation , 2003 .
[14] Lucie Baudouin,et al. Existence and Regularity of the Solution of a Time Dependent Hartree-Fock Equation Coupled with a Classical Nuclear Dynamics , 2005 .
[15] L. Fanelli,et al. Strichartz and Smoothing Estimates for Dispersive Equations with Magnetic Potentials , 2007, math/0702362.
[16] S. Herr,et al. CONDITIONAL LARGE INITIAL DATA SCATTERING RESULTS FOR THE DIRAC–KLEIN–GORDON SYSTEM , 2017, Forum of Mathematics, Sigma.
[17] A. Kiselev,et al. Maximal Functions Associated to Filtrations , 2001 .
[18] L. Milne‐Thomson. A Treatise on the Theory of Bessel Functions , 1945, Nature.
[19] Eric S'er'e,et al. LOCAL SMOOTHING ESTIMATES FOR THE MASSLESS DIRAC-COULOMB EQUATION , 2015, 1503.00945.
[20] F. Cacciafesta,et al. Endpoint estimates and global existence for the nonlinear Dirac equation with potential , 2011, 1103.4014.
[21] Claude Le Bris,et al. ON THE TIME-DEPENDENT HARTREE–FOCK EQUATIONS COUPLED WITH A CLASSICAL NUCLEAR DYNAMICS , 1999 .