Domains of Commutative C-Subalgebras

Operator algebras provide uniform semantics for deterministic, reversible, probabilistic, and quantum computing, where intermediate results of partial computations are given by commutative sub algebras. We study this setting using domain theory, and show that a given operator algebra is scattered if and only if its associated partial order is, equivalently: continuous (a domain), algebraic, atomistic, quasi-continuous, or quasialgebraic. In that case, conversely, we prove that the Lawson topology, modelling information approximation, allows one to associate an operator algebra to the domain.

[1]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[2]  Joan W Negrepontis Duality in analysis from the point of view of triples , 1971 .

[3]  Steven J. Vickers,et al.  Quantales, observational logic and process semantics , 1993, Mathematical Structures in Computer Science.

[4]  S. Wassermann,et al.  C*‐ALGEBRAS BY EXAMPLE (Fields Institute Monographs 6) , 1998 .

[5]  Robert W. J. Furber,et al.  From Kleisli Categories to Commutative C*-algebras: Probabilistic Gelfand Duality , 2013, Log. Methods Comput. Sci..

[6]  P. Koszmider,et al.  C*-algebras with and without ≪-increasing approximate units , 2017, Journal of Mathematical Analysis and Applications.

[7]  E. Richard Cohen,et al.  Foundations of Quantum Theory , 1955 .

[8]  Chris Heunen,et al.  Active lattices determine AW*−algebras , 2012, 1212.5778.

[9]  M. Keyl Fundamentals of quantum information theory , 2002, quant-ph/0202122.

[10]  Alain Connes,et al.  A Factor Not Anti-Isomorphic to Itself , 1975 .

[11]  Vincent Danos,et al.  Labelled Markov Processes: Stronger and Faster Approximations , 2004, Electron. Notes Theor. Comput. Sci..

[12]  E. Lieb,et al.  Analysis, Second edition , 2001 .

[13]  Gary F. Birkenmeier,et al.  π-Baer rings , 2017 .

[14]  E. Zeidler,et al.  Quantum Field Theory and Gravity , 2012 .

[15]  H. E. Jensen,et al.  Scattered $C^*$-algebras. , 1977 .

[16]  Chris Hankin,et al.  Quantitative Relations and Approximate Process Equivalences , 2003, CONCUR.

[17]  Samson Abramsky,et al.  A Cook's Tour of the Finitary Non-Well-Founded Sets , 2011, We Will Show Them!.

[18]  Richard V. Kadison,et al.  Fundamentals of the Theory of Operator Algebras. Volume IV , 1998 .

[19]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[20]  Tadashi Huruya A Spectral Characterization of a Class of $C^{*}$ -algebras , 1978 .

[21]  Viggo Stoltenberg-Hansen,et al.  Mathematical theory of domains , 1994, Cambridge tracts in theoretical computer science.

[22]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.

[23]  Joachim Cuntz,et al.  K-theory and C*-algebras , 1984 .

[24]  Bas Spitters,et al.  The Space of Measurement Outcomes as a Spectral Invariant for Non-Commutative Algebras , 2012 .

[25]  P. Daniel Hestand,et al.  Mathematical theory of domains , 2002, SIGA.

[26]  Samson Abramsky,et al.  Handbook of logic in computer science. , 1992 .

[27]  N. Saheb-Djahromi,et al.  CPO'S of Measures for Nondeterminism , 1980, Theor. Comput. Sci..

[28]  Bart Jacobs,et al.  Measurable Spaces and Their Effect Logic , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[29]  Chris Heunen,et al.  Noncommutativity as a Colimit , 2010, Appl. Categorical Struct..

[30]  John Harding,et al.  Abelian subalgebras and the Jordan structure of a von Neumann algebra , 2010, 1009.4945.

[31]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[32]  Sylvia Pulmannová,et al.  New trends in quantum structures , 2000 .

[33]  George Grätzer,et al.  On the lattice of subalgebras of a Boolean algebra , 1972 .

[34]  M. Fabian,et al.  Functional Analysis and Infinite-Dimensional Geometry , 2001 .

[35]  Herbert Wiklicky,et al.  Operator Algebras and the Operational Semantics of Probabilistic Languages , 2006, MFCSIT.

[36]  M. Andrew Moshier,et al.  A Duality Theorem for Real C* Algebras , 2009, CALCO.

[37]  Vincent Danos,et al.  Proof-nets and the Hilbert space , 1995 .

[38]  Chris Heunen,et al.  Characterizations of Categories of Commutative C*-Subalgebras , 2011, 1106.5942.

[39]  Dexter Kozen,et al.  Semantics of probabilistic programs , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[40]  Prakash Panangaden,et al.  Minimization via Duality , 2012, WoLLIC.

[41]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[42]  A. J. Lindenhovius,et al.  Classifying Finite-Dimensional C*-Algebras by Posets of Their Commutative C*-Subalgebras , 2015, 1501.03030.

[43]  Manuel L. Reyes,et al.  Sheaves that fail to represent matrix rings , 2012, 1211.4005.

[44]  Jan Hamhalter,et al.  Dye's Theorem and Gleason's Theorem for AW*-algebras , 2014, 1408.4597.

[45]  Chris Heunen,et al.  The Many Classical Faces of Quantum Structures , 2014, Entropy.

[46]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[47]  Ilijas Farah,et al.  Nonseparable UHF algebras I: Dixmier's problem , 2009, 0906.1401.

[48]  Nitakshi Goyal,et al.  General Topology-I , 2017 .

[49]  O. Bratteli Inductive limits of finite dimensional C*-algebras , 1972 .

[50]  Vincent Danos,et al.  Labeled Markov processes: stronger and faster approximations , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[51]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras, Volume II: Advanced Theory , 1997 .

[52]  J. Dixmier,et al.  Von Neumann Algebras , 1981 .

[53]  Manuel L. Reyes,et al.  Obstructing extensions of the functor spec to noncommutative rings , 2011, 1101.2239.

[54]  J. Wright,et al.  Monotone complete C*‐algebras and generic dynamics , 2012, 1212.6503.

[55]  Chris Heunen,et al.  Extending obstructions to noncommutative functorial spectra , 2014, 1407.2745.

[56]  Vincent Danos,et al.  Conditional Expectation and the Approximation of Labelled Markov Processes , 2003, CONCUR.

[57]  R. Kadison Theory of operators, Part II. operator algebras , 1958 .

[58]  A. Mainzer,et al.  NEOWISE OBSERVATIONS OF COMET C/2013 A1 (SIDING SPRING) AS IT APPROACHES MARS , 2014, 1412.2117.

[59]  Lynn Arthur Steen,et al.  Counterexamples in Topology , 1970 .

[60]  O. Bratteli,et al.  Structure spaces of approximately finite-dimensional C∗-algebras, II , 1974 .

[61]  Joël Ouaknine,et al.  Duality for Labelled Markov Processes , 2004, FoSSaCS.

[62]  Kenta Cho,et al.  Semantics for a Quantum Programming Language by Operator Algebras , 2014, New Generation Computing.

[63]  Jan Hamhalter,et al.  Isomorphisms of ordered structures of abelian C⁎-subalgebras of C⁎-algebras , 2011 .

[64]  Jean-Yves Girard,et al.  Geometry of Interaction V: Logic in the hyperfinite factor , 2011, Theor. Comput. Sci..

[65]  Mathys Rennela,et al.  Towards a Quantum Domain Theory: Order-enrichment and Fixpoints in W*-algebras , 2014, MFPS.

[66]  FUNCTION ALGEBRAS AND THE LATTICE OF COMPACTIFICATIONS , 1999 .

[67]  Fahd Ali Al-Agl,et al.  Theory and Applications of Categories , 1993 .

[68]  Irving Kaplansky,et al.  PROJECTIONS IN BANACH ALGEBRAS , 1951 .

[69]  Chris Heunen Piecewise Boolean Algebras and Their Domains , 2014, ICALP.

[70]  Prakash Panangaden,et al.  Labelled Markov Processes , 2009 .

[71]  Bas Spitters,et al.  A Topos for Algebraic Quantum Theory , 2007, 0709.4364.

[72]  K. Davidson C*-algebras by example , 1996 .

[73]  Zbigniew Semadeni,et al.  Banach spaces of continuous functions , 1971 .