Hidden Determinism, Probability, and Time's Arrow

In present-day physics the fundamental dynamical laws are taken as a time-translation-invariant and time-reversal-invariant one-parameter groups of automorphisms of the underlying mathematical structure. In this context-independent and empirically inaccessible description there is no past, present or future, hence no distinction between cause and effect. To get the familiar description in terms of causes and effects, the time-reversal symmetry of the fundamental dynamics has to be broken. Thereby one gets two representations, one satisfying the generally accepted rules of retarded causality (no effect can precede its cause). The other one describes the strange rules of advanced causality. For entangled (but not necessarily interacting) quantum systems the arrow of time must have the same direction for all subsystems. But for classical systems, or for classical subsystems of quantum systems, this argument does not hold. As a cosequence, classical systems allow the conceptual possibility of advanced causality in addition to retarded causality. Every mathematically formulated dynamics of statistically reproducible events can be extended to a description in terms of a one-parameter group of automorphisms of an enlarged mathematical structure which describes a fictitious hidden determinism. Consequently, randomness in the sense of mathematical probability theory is only a weak generalization of determinism. The popular ideas that in quantum theory there are gaps in the causal chain which allow the accommodation of the freedom of human action are fantasies which have no basis in present-day quantum mechanics. Quantum events are governed by strict statistical laws. Freedom of action is a constitutive necessity of all experimental science which requires a violation of the statistical predictions of physics. We conclude that the presently adopted first principles of theoretical physics can neither explain the autonomy of the psyche nor account for the freedom of action necessary for experimental science.

[1]  Meir Hemmo,et al.  The Quantum Mechanics of Minds and Worlds , 2002 .

[2]  Gérard G. Emch,et al.  Algebraic methods in statistical mechanics and quantum field theory , 1972 .

[3]  R. Goodstein Boolean algebra , 1963 .

[4]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[5]  Y Murayama,et al.  Foundations of Quantum Mechanics in the Light of New Technology: Selected Papers from the Proceedings of the First through Fourth International Symposia on Foundations of Quantum Mechanics , 1997 .

[6]  J. Eccles,et al.  Quantum aspects of brain activity and the role of consciousness. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Kim Haugbølle,et al.  Proceedings of the 2nd International Symposium , 2003 .

[8]  M. Reed,et al.  Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .

[9]  Edmund Taylor Whittaker The Nature of the Physical World , 1929, Nature.

[10]  A. Nerode,et al.  Linear automaton transformations , 1958 .

[11]  D. A. Kappos,et al.  Probability algebras and stochastic spaces , 1969 .

[12]  W. Scott,et al.  Group Theory. , 1964 .

[13]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[14]  W. Wonham,et al.  Topics in mathematical system theory , 1972, IEEE Transactions on Automatic Control.

[15]  Léon Nicholas Brillouin,et al.  Scientific Uncertainty and Information , 1964 .

[16]  B. M. Hill,et al.  Theory of Probability , 1990 .

[17]  C. C. Chang On the representation of -complete Boolean algebras , 1957 .

[18]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[19]  Satosi Watanabe Norbert Wiener and Cybernetical Concept of Time , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[20]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[21]  B. Misra,et al.  From time operator to chronons , 1995 .

[22]  R. G. Cooke Functional Analysis and Semi-Groups , 1949, Nature.

[23]  Irving John Good,et al.  The Estimation of Probabilities: An Essay on Modern Bayesian Methods , 1965 .

[24]  K. Popper,et al.  The open universe : an argument for indeterminism , 1982 .

[25]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.

[26]  L. J. Savage The Foundations of Statistical Inference. , 1963 .

[27]  Polskie Towarzystwo Matematyczne Annales de la Société Polonaise de Mathématique , 1952 .

[28]  E. Wong,et al.  On the Convergence of Ordinary Integrals to Stochastic Integrals , 1965 .

[29]  Wahrscheinlichkeit und Physik , 1961 .

[30]  J. S. Howland,et al.  Stationary scattering theory for time-dependent Hamiltonians , 1974 .

[31]  J. Łoś On the axiomatic treatment of probability , 1955 .

[32]  Bruno de Finetti,et al.  Probability, induction and statistics , 1972 .

[33]  H. Margenau Quantum Mechanics, Free Will, and Determinism , 1967 .

[34]  Helly Grundbegriffe der Wahrscheinlichkeitsrechnung , 1936 .

[35]  J. Müller,et al.  Group Theory , 2019, Computers, Rigidity, and Moduli.

[36]  B. D. Finetti,et al.  Probability, induction and statistics : the art of guessing , 1979 .

[37]  渡辺 慧,et al.  Knowing and guessing : a quantitative study of inference and information , 1969 .

[38]  F I G Rawlins,et al.  Philosophical Foundations of Physics—An Introduction to the Philosophy of Science , 1967 .

[39]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[40]  John Earman,et al.  A Primer on Determinism , 1986 .

[41]  N. Gisin Quantum measurements and stochastic processes , 1984 .

[42]  Zweiwertige Wahrscheinlichkeitsfunktionen auf orthokomplementären Verbänden , 1965 .

[43]  E. Wong,et al.  ON THE RELATION BETWEEN ORDINARY AND STOCHASTIC DIFFERENTIAL EQUATIONS , 1965 .

[44]  P. Muhly,et al.  On Isometries of Operator Algebras , 1994 .

[45]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[46]  A. Cournot Exposition de la théorie des chances et des probabilités , 1843 .

[47]  Hamiltonian Representation of Stationary Processes , 1988 .

[48]  Henry E. Kyburg,et al.  Studies in Subjective Probability , 1965 .

[49]  竹崎 正道 Theory of operator algebras , 2002 .

[50]  E. Wigner Ueber die Operation der Zeitumkehr in der Quantenmechanik , 1993 .

[51]  David Hume A Treatise of Human Nature: Being an Attempt to introduce the experimental Method of Reasoning into Moral Subjects , 1972 .

[52]  Band , 1943 .