Synthesis of Pt/mesoporous SiC-15 and its catalytic performance for sulfuric acid decomposition

[1]  K. Jung,et al.  Preparation Scheme of Active Pt/SiC Catalyst and Its Phase Changes During Sulfuric Acid Decomposition to Produce Hydrogen in the SI Cycle , 2017, Catalysis Letters.

[2]  W. S. Teo,et al.  Recent Progress in Energy‐Driven Water Splitting , 2017, Advanced science.

[3]  F. Abild‐Pedersen,et al.  Sintering of Pt Nanoparticles via Volatile PtO2: Simulation and Comparison with Experiments , 2016 .

[4]  S. Kawi,et al.  Synthesis and evaluation of highly dispersed SBA-15 supported Ni–Fe bimetallic catalysts for steam reforming of biomass derived tar reaction , 2016 .

[5]  O. Diat,et al.  Elaborating ordered silicon carbide nanorods by preceramic polymer nanocasting , 2015 .

[6]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[7]  S. Noh,et al.  Synthesis of thermally stable porous SiC hollow spheres and control of the shell thickness , 2014 .

[8]  Qiuwan Wang,et al.  Numerical Modeling of Bayonet-Type Heat Exchanger and Decomposer for the Decomposition of Sulfuric Acid to Sulfur Dioxide , 2014 .

[9]  Y. Shul,et al.  Sulfuric acid decomposition on the Pt/n-SiC catalyst for SI cycle to produce hydrogen , 2014 .

[10]  Y. Shul,et al.  Sulfuric acid decomposition on Pt/SiC-coated-alumina catalysts for SI cycle hydrogen production , 2013 .

[11]  O. Deutschmann,et al.  A simple method for CO chemisorption studies under continuous flow: Adsorption and desorption behavior of Pt/Al2O3 catalysts , 2012 .

[12]  A. Yamazaki,et al.  Thermal stability and behavior of platelet-shaped SBA-15 containing Zr , 2012, Journal of Porous Materials.

[13]  B. Yuan,et al.  Formation and Thermal Stability of Platinum Oxides on Size-Selected Platinum Nanoparticles: Support Effects , 2010 .

[14]  Nariaki Sakaba,et al.  Thermochemical water-splitting cycle using iodine and sulfur , 2009 .

[15]  H. Rollins,et al.  High-temperature sulfuric acid decomposition over complex metal oxide catalysts , 2009 .

[16]  Jinsoo Kim,et al.  Preparation and characterization of Fe/Cu/Al2O3-composite granules for SO3 decomposition to assist hydrogen production , 2008 .

[17]  Daniel M. Ginosar,et al.  Pt/TiO2 (Rutile) Catalysts for Sulfuric Acid Decomposition in Sulfur-Based Thermochemical Water-Splitting Cycles , 2008 .

[18]  S. Rashkeev,et al.  Catalytic Activity of Supported Metal Particles for Sulfuric Acid Decomposition Reaction , 2007 .

[19]  S. Funari,et al.  Pore lattice deformation in ordered mesoporous silica studied by in situ small-angle X-ray diffraction , 2007 .

[20]  B. Lee,et al.  Catalytic decomposition of sulfur trioxide on the binary metal oxide catalysts of Fe/Al and Fe/Ti , 2006 .

[21]  Yangyang Shi,et al.  Highly Ordered Mesoporous Silicon Carbide Ceramics with Large Surface Areas and High Stability , 2006 .

[22]  X. Q. Wang,et al.  Influence of Fe on the thermal stability and catalysis of SBA-15 mesoporous molecular sieves , 2005 .

[23]  G. Somorjai,et al.  High-surface-area catalyst design: Synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. , 2005, The journal of physical chemistry. B.

[24]  Kaoru Onuki,et al.  A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine–sulfur process , 2004 .

[25]  D. Bianchi,et al.  Oxidation of CO on a Pt/Al2O3 catalyst: from the surface elementary steps to light-off tests: IV. Kinetic study of the reduction by CO of strongly adsorbed oxygen species , 2003 .

[26]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[27]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[28]  J. Vohs,et al.  Oxygen desorption from α-Al2O3 (0001) supported Rh, Pt and Pd particles , 1997 .

[29]  N. Nag A study on the dispersion and catalytic activity of gamma alumina-supported palladium catalysts , 1994 .

[30]  H. Jehn High temperature behaviour of platinum group metals in oxidizing atmospheres , 1984 .

[31]  H. Jehn Platinum losses during high temperature oxidation , 1981 .

[32]  J. Troe,et al.  The spin‐forbidden dissociation–recombination reaction SO3?SO2+O , 1979 .

[33]  Y. Hayashi,et al.  Fabrication of ZnO nanoparticles confined in the channels of mesoporous carbon , 2012 .

[34]  Ping Zhang,et al.  Catalytic decomposition of sulfuric acid on composite oxides and Pt/SiC , 2012 .

[35]  H. Tagawa,et al.  Catalytic decomposition of sulfuric acid using metal oxides as the oxygen generating reaction in thermochemical water splitting process , 1989 .

[36]  H. Ishikawa,et al.  Catalyzed thermal decompositon of H2SO4 and production of HBr by the reaction of SO2 with Br2 and H2O , 1982 .

[37]  D. R. O'keefe,et al.  Catalysis research in thermochemical water-splitting processes , 1980 .