Negative Binomial Matrix Factorization

We introduce negative binomial matrix factorization (NBMF), a matrix factorization technique specially designed for analyzing over-dispersed count data. It can be viewed as an extension of Poisson factorization (PF) perturbed by a multiplicative term which models exposure. This term brings a degree of freedom for controlling the dispersion, making NBMF more robust to outliers. We describe a majorization-minimization (MM) algorithm for a maximum likelihood estimation of the parameters. We provide results on a recommendation task and demonstrate the ability of NBMF to efficiently exploit raw data.

[1]  E. Pierson,et al.  ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis , 2015, Genome Biology.

[2]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[3]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[4]  David B. Dunson,et al.  Lognormal and Gamma Mixed Negative Binomial Regression , 2012, ICML.

[5]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[6]  Thomas Oberlin,et al.  Negative Binomial Matrix Factorization for Recommender Systems , 2018, ArXiv.

[7]  David M. Blei,et al.  Scalable Recommendation with Hierarchical Poisson Factorization , 2015, UAI.

[8]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[9]  Ulrich Paquet,et al.  One-class collaborative filtering with random graphs , 2013, WWW '13.

[10]  Jérôme Idier,et al.  Algorithms for nonnegative matrix factorization with the beta-divergence , 2010, ArXiv.

[11]  John F. Canny,et al.  GaP: a factor model for discrete data , 2004, SIGIR '04.

[12]  Mingyuan Zhou,et al.  Nonparametric Bayesian Negative Binomial Factor Analysis , 2016, Bayesian Analysis.

[13]  Roland Badeau,et al.  Semi-blind student's t source separation for multichannel audio convolutive mixtures , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[14]  James Bennett,et al.  The Netflix Prize , 2007 .

[15]  Masataka Goto,et al.  Student's T nonnegative matrix factorization and positive semidefinite tensor factorization for single-channel audio source separation , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Ali Taylan Cemgil,et al.  Bayesian Inference for Nonnegative Matrix Factorisation Models , 2009, Comput. Intell. Neurosci..

[17]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[18]  David M. Blei,et al.  Modeling User Exposure in Recommendation , 2015, WWW.

[19]  Diane Lambert,et al.  Zero-inflacted Poisson regression, with an application to defects in manufacturing , 1992 .

[20]  S. Dudoit,et al.  A general and flexible method for signal extraction from single-cell RNA-seq data , 2018, Nature Communications.

[21]  J. H. Schuenemeyer,et al.  Generalized Linear Models (2nd ed.) , 1992 .

[22]  Thierry Bertin-Mahieux,et al.  The Million Song Dataset , 2011, ISMIR.

[23]  Michael R. Lyu,et al.  Probabilistic factor models for web site recommendation , 2011, SIGIR.

[24]  Nicolas Dobigeon,et al.  Nonlinear Hyperspectral Unmixing With Robust Nonnegative Matrix Factorization , 2014, IEEE Transactions on Image Processing.

[25]  Aleks Jakulin,et al.  Discrete Component Analysis , 2005, SLSFS.

[26]  Vincent Y. F. Tan,et al.  Automatic Relevance Determination in Nonnegative Matrix Factorization with the /spl beta/-Divergence , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Paris Smaragdis,et al.  Static and Dynamic Source Separation Using Nonnegative Factorizations: A unified view , 2014, IEEE Signal Processing Magazine.

[28]  Barbara E. Engelhardt,et al.  Coupled Compound Poisson Factorization , 2017, ArXiv.

[29]  Max Simchowitz Zero-Inflated Poisson Factorization for Recommendation Systems , 2014 .

[30]  D. Hunter,et al.  A Tutorial on MM Algorithms , 2004 .

[31]  J. Lawless Negative binomial and mixed Poisson regression , 1987 .

[32]  E. Mulvey,et al.  Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models. , 1995, Psychological bulletin.

[33]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[34]  Jérôme Idier,et al.  Algorithms for Nonnegative Matrix Factorization with the β-Divergence , 2010, Neural Computation.

[35]  Mingyuan Zhou,et al.  Poisson-Gamma dynamical systems , 2016, NIPS.