Polynomiography Based on the Nonstandard Newton-Like Root Finding Methods

A survey of some modifications based on the classic Newton’s and the higher order Newton-like root finding methods for complex polynomials is presented. Instead of the standard Picard’s iteration several different iteration processes, described in the literature, which we call nonstandard ones, are used. Kalantari’s visualizations of root finding process are interesting from at least three points of view: scientific, educational, and artistic. By combining different kinds of iterations, different convergence tests, and different colouring we obtain a great variety of polynomiographs. We also check experimentally that using complex parameters instead of real ones in multiparameter iterations do not destabilize the iteration process. Moreover, we obtain nice looking polynomiographs that are interesting from the artistic point of view. Real parts of the parameters alter symmetry, whereas imaginary ones cause asymmetric twisting of polynomiographs.

[1]  Suthep Suantai,et al.  On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval , 2011, J. Comput. Appl. Math..

[2]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[3]  Clifford A. Pickover,et al.  A note on chaos and Halley's method , 1988, CACM.

[4]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[5]  Renu Chugh,et al.  Dynamics of Antifractals in Noor Orbit , 2012 .

[6]  M. Noor New approximation schemes for general variational inequalities , 2000 .

[7]  Jürgen Schu,et al.  Iterative construction of fixed points of asymptotically nonexpansive mappings , 1991 .

[8]  Clifford A. Pickover Computers, Pattern, Chaos, and Beauty: Graphics from an Unseen World , 2001 .

[9]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[10]  S. Ishikawa Fixed points by a new iteration method , 1974 .

[11]  V. Berinde Iterative Approximation of Fixed Points , 2007 .

[12]  Vatan Karakaya,et al.  A PICARD-S HYBRID TYPE ITERATION METHOD FOR SOLVING A DIFFERENTIAL EQUATION WITH RETARDED ARGUMENT , 2014 .

[13]  Mamta Rani,et al.  Superior Mandelbrot Set , 2004 .

[14]  É. Picard Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives , 1890 .

[15]  Fazlollah Soleymani,et al.  Multipoint Iterative Methods for Finding All the Simple Zeros in an Interval , 2014, J. Appl. Math..

[16]  Nawab Hussain,et al.  Optimal Sixteenth Order Convergent Method Based on Quasi-Hermite Interpolation for Computing Roots , 2014, TheScientificWorldJournal.

[17]  Nitin Mishra,et al.  Robust Printed Devanagari Document Recognition using Hybrid Approach of Shirorekha Chopping, Fuzzy Directional Features and Support Vector Machine , 2012 .

[18]  Bahman Kalantari,et al.  Polynomiography: From the Fundamental Theorem of Algebra to Art , 2005, Leonardo.

[19]  B. Kalantari Polynomial Root-finding and Polynomiography , 2008 .

[20]  M. Rani,et al.  Superior Julia Set , 2004 .

[21]  Renu Chugh,et al.  Julia sets and Mandelbrot sets in Noor orbit , 2014, Appl. Math. Comput..

[23]  Robert M. Corless,et al.  Quasipolynomial root-finding: A numerical homotopy method∗ , 2005 .

[24]  Bahman Kalantari,et al.  Voronoi Diagram Properties in Polynomials with Polynomiography Applications and Extensions , 2012, 2012 Ninth International Symposium on Voronoi Diagrams in Science and Engineering.

[25]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[26]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[27]  Michael Levin,et al.  Discontinuous and alternate q-system fractals , 1994, Comput. Graph..

[28]  Suthep Suantai,et al.  Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings , 2005 .

[29]  Bhagwati Prasad,et al.  Fractals via Ishikawa Iteration , 2011 .

[30]  Ashish Negi,et al.  New Julia Sets of Ishikawa Iterates , 2010 .

[31]  Sarika Jain,et al.  A new approach to superfractals , 2009 .

[32]  Agnieszka Lisowska,et al.  Polynomiography via Ishikawa and Mann Iterations , 2012, ISVC.

[33]  Safeer Hussain Khan A Picard-Mann hybrid iterative process , 2013 .

[34]  Miodrag S. Petkovic,et al.  Multipoint methods for solving nonlinear equations: A survey , 2014, Appl. Math. Comput..

[35]  Renu Chugh,et al.  Strong Convergence of a New Three Step Iterative Scheme in Banach Spaces , 2012 .

[36]  Faik Gürsoy,et al.  Fixed Point of a New Three-Step Iteration Algorithm under Contractive-Like Operators over Normed Spaces , 2013 .