Radiative efficiency of lead iodide based perovskite solar cells

The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate.

[1]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[2]  Valentin D. Mihailetchi,et al.  Device model for the operation of polymer/fullerene bulk heterojunction solar cells , 2005 .

[3]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[4]  Mark S. Lundstrom,et al.  On the Use of Rau's Reciprocity to Deduce External Radiative Efficiency in Solar Cells , 2013, IEEE Journal of Photovoltaics.

[5]  Thomas Kirchartz,et al.  Detailed balance and reciprocity in solar cells , 2008 .

[6]  P. Würfel,et al.  The chemical potential of radiation , 1982 .

[7]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[8]  U. Rau,et al.  Detailed balance theory of excitonic and bulk heterojunction solar cells , 2008 .

[9]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[10]  Jean Manca,et al.  Electroluminescence from charge transfer states in polymer solar cells. , 2009, Journal of the American Chemical Society.

[11]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[12]  Thomas Kirchartz,et al.  Efficiency Limits of Organic Bulk Heterojunction Solar Cells , 2009 .

[13]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[14]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[15]  G. Kirchhoff,et al.  Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht , 1860 .

[16]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[17]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[18]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[19]  Jean Manca,et al.  Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells , 2010 .

[20]  Michael M. Lee,et al.  Low-Temperature Processed Mesosuperstructured to Thin-Film Perovskite Solar Cells , 2013 .

[21]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[22]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[23]  H. Bolink,et al.  Meniscus coated high open-circuit voltage bi-layer solar cells , 2012, Photonics Europe.

[24]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[25]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[26]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[27]  Henk J. Bolink,et al.  Flexible high efficiency perovskite solar cells , 2014 .

[28]  Martin A. Green,et al.  Radiative efficiency of state‐of‐the‐art photovoltaic cells , 2012 .

[29]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.