Simulation of sharp gas–liquid interface using VOF method and adaptive grid local refinement around the interface

The volume of fluid (VOF) method is used to perform two-phase simulations (gas–liquid). The governing Navier–Stokes conservation equations of the flow field are numerically solved on two-dimensional axisymmetric or three-dimensional unstructured grids, using Cartesian velocity components, following the finite volume approximation and a pressure correction method. A new method of adaptive grid local refinement is developed in order to enhance the accuracy of the predictions, to capture the sharp gas–liquid interface and to speed up the calculations. Results are compared with experimental measurements in order to assess the efficiency of the method. Copyright © 2004 John Wiley & Sons, Ltd.

[1]  M. Darwish,et al.  A NEW HIGH-RESOLUTION SCHEME BASED ON THE NORMALIZED VARIABLE FORMULATION , 1993 .

[2]  V. Hlavácek,et al.  An explicit 3D finite-volume method for simulation of reactive flows using a hybrid moving adaptive grid , 1993 .

[3]  R. I. Issa,et al.  A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes , 1999 .

[4]  Daniel C. Haworth,et al.  Adaptive grid refinement using cell-level and global imbalances , 1997 .

[5]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[6]  C. Rhie,et al.  A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation , 1982 .

[7]  R. Ramakrishnan Structured and unstructured grid adaptation schemes for numerical modeling of field problems , 1994 .

[8]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[9]  Fue-Sang Lien,et al.  Local mesh refinement within a multi-block structured-grid scheme for general flows , 1997 .

[10]  George Papadakis,et al.  A local grid refinement method for three-dimensional turbulent recirculating flows , 1999 .

[11]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[12]  P. Woodward,et al.  SLIC (Simple Line Interface Calculation) , 1976 .

[13]  A. D. Gosman,et al.  Automatic Resolution Control for the Finite-Volume Method, Part 2: Adaptive Mesh Refinement and Coarsening , 2000 .

[14]  Numerical investigation of the interface in a continuous steel casting mold water model , 1998 .

[15]  George Papadakis,et al.  A locally modified second order upwind scheme for convection terms discretization , 1995 .

[16]  John A. Trapp,et al.  A numerical technique for low-speed homogeneous two-phase flow with sharp interfaces , 1976 .

[17]  C. W. Hirt,et al.  Calculating three-dimensional free surface flows in the vicinity of submerged and exposed structures , 1973 .

[18]  Bart J. Daly,et al.  A technique for including surface tension effects in hydrodynamic calculations , 1969 .

[19]  Pedro J. Coelho,et al.  CALCULATION OF LAMINAR RECIRCULATING FLOWS USING A LOCAL NON-STAGGERED GRID REFINEMENT SYSTEM , 1991 .

[20]  Stojan Petelin,et al.  Numerical errors of the volume‐of‐fluid interface tracking algorithm , 2002 .

[21]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[22]  Dimos Poulikakos,et al.  Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling , 1995 .

[23]  B. P. Leonard,et al.  The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection , 1991 .

[24]  Dimos Poulikakos,et al.  Modeling of the deformation of a liquid droplet impinging upon a flat surface , 1993 .

[25]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[26]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .