Tracking in 4 dimensions

Abstract In this contribution we will review the progresses toward the construction of a tracking system able to measure the passage of charged particles with a combined precision of ∼10 ps and ∼10 μm, either using a single type of sensor, able to concurrently measure position and time, or a combination of position and time sensors.

[1]  G. Pellegrini,et al.  Simulation of new p-type strip detectors with trench to enhance the charge multiplication effect in the n-type electrodes , 2011 .

[2]  Mathieu Benoit,et al.  100ps time resolution with thin silicon pixel detectors and a SiGe HBT amplifier , 2015 .

[3]  Maurizio Boscardin,et al.  Design optimization of ultra-fast silicon detectors , 2015 .

[4]  D.Kim,et al.  A double junction model of irradiated silicon pixel sensors for LHC , 2005, physics/0506228.

[5]  A. Rivetti CMOS: Front-End Electronics for Radiation Sensors , 2015 .

[6]  S. Ramo Currents Induced by Electron Motion , 1939, Proceedings of the IRE.

[7]  V. Fadeyev,et al.  Sensors for ultra-fast silicon detectors , 2014 .

[8]  V. Fadeyev,et al.  Radiation effects in Low Gain Avalanche Detectors after hadron irradiations , 2015 .

[9]  Nicolo Cartiglia,et al.  Ultra-Fast Silicon Detectors , 2013, An Introduction to Ultra-Fast Silicon Detectors.

[10]  Nicolo Cartiglia,et al.  Weightfield2: A fast simulator for silicon and diamond solid state detector , 2015 .

[11]  P. Jarron,et al.  Review of results for the NA62 gigatracker read-out prototype , 2012 .

[12]  Maurizio Boscardin,et al.  Design and TCAD simulation of double-sided pixelated low gain avalanche detectors , 2015 .

[13]  G. Pellegrini,et al.  Technology developments and first measurements of Low Gain Avalanche Detectors (LGAD) for high energy physics applications , 2014 .

[14]  A. Seiden,et al.  Signal formation in irradiated silicon detectors , 2017 .