Self-aligned nanoscale processing solutions via selective atomic layer deposition of oxide, nitride, and metallic films

Nanoscale process integration demands novel nanopatterning techniques in compliance with the requirements of next generation devices. Conventionally, top-down subtractive (etch) or additive (deposition/lift-off) processes in conjunction with various lithography techniques is employed to achieve film patterning, which become increasingly challenging due to the ever-shrinking alignment requirements. To reduce the complexity burden of lithographic alignment in critical fabrication steps, self-aligned processes such as selective deposition and selective etching might provide attractive solutions. Selective atomic layer deposition (SALD) has attracted immense attention in recent years for self-aligned accurate pattern placement with sub-nanometer thickness control. During the atomic layer deposition (ALD) process, film nucleation is critically dependent on the surface chemistry of the substrate which makes it possible to achieve selective-ALD (SALD) by chemically modifying the substrate surface. Local modification of substrate surface opens up possibilities to achieve lateral control over film growth in addition to robust thickness control during ALD process. SALD offers numerous advantages in nanoscale device fabrication such as reduction of the lithography steps required, elimination of complicated etching processes, and minimization of expensive reagent use. In this work, we review our recent SALD efforts using various inhibition layers resulting in promising self-aligned deposition solutions for metaloxide, metal, and III-nitride thin films. We report a comprehensive investigation to select the most compatible inhibition layer among poly(methylmethacrylate) (PMMA), polyvinylpyrrolidone (PVP), and ICP-polymerized fluorocarbon layers for SALD of metal-oxide and metallic thin films. In addition, single-layer and multi-layered graphene layers are explored as plasma-compatible inhibition layers for selective deposition of III-nitride materials. Extensive materials characterization efforts are carried out to correlate the ALD recipe parameters with the selective deposition performance. The materials and deposition recipes developed in this work overcome various challenges associated with previous methods of SALD and provide alternative routes towards nano-patterning particularly for the sub-10 nm CMOS technology nodes as well as for sensors, photovoltaics, materials for energy storage, catalysis, etc.

[1]  Ilkeun Lee,et al.  Patterning of Solid Films via Selective Atomic Layer Deposition Based on Silylation and UV/Ozonolysis. , 2016, ACS applied materials & interfaces.

[2]  S. Bent,et al.  A Process for Topographically Selective Deposition on 3D Nanostructures by Ion Implantation. , 2016, ACS nano.

[3]  Gregory N. Parsons,et al.  Using Hydrogen To Expand the Inherent Substrate Selectivity Window During Tungsten Atomic Layer Deposition , 2016 .

[4]  S. Bent,et al.  Self-Correcting Process for High Quality Patterning by Atomic Layer Deposition. , 2015, ACS nano.

[5]  K. Cao,et al.  Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition , 2015, Scientific Reports.

[6]  K. Dawson,et al.  Vacuum ultraviolet photochemical selective area atomic layer deposition of Al2O3 dielectrics , 2015 .

[7]  Jiyoung Kim,et al.  Area-selective ALD of TiO2 nanolines with electron-beam lithography , 2014 .

[8]  A. Bol,et al.  The use of atomic layer deposition in advanced nanopatterning. , 2014, Nanoscale.

[9]  Xiaoqiang Jiang,et al.  In-situ spectroscopic ellipsometry study of copper selective-area atomic layer deposition on palladium , 2014 .

[10]  S. Bent,et al.  A New Resist for Area Selective Atomic and Molecular Layer Deposition on Metal−Dielectric Patterns , 2014 .

[11]  T. Puig,et al.  Integration of atomic layer deposition CeO2 thin films with functional complex oxides and 3D patterns , 2014 .

[12]  Carolyn R. Ellinger,et al.  Selective Area Spatial Atomic Layer Deposition of ZnO, Al2O3, and Aluminum-Doped ZnO Using Poly(vinyl pyrrolidone) , 2014 .

[13]  O. Seitz,et al.  Controlling the Atomic Layer Deposition of Titanium Dioxide on Silicon: Dependence on Surface Termination , 2013 .

[14]  Carolyn R. Ellinger,et al.  Metal-oxide thin-film transistors patterned by printing , 2013 .

[15]  M. Verheijen,et al.  Direct-wire atomic layer deposition of high-quality Pt nanostructures : selective growth conditions and seed layer requirements , 2013 .

[16]  M. Srinivasan,et al.  Robust, High-Density Zinc Oxide Nanoarrays by Nanoimprint Lithography-Assisted Area-Selective Atomic Layer Deposition , 2012 .

[17]  M. Varela,et al.  Low Temperature Epitaxial Oxide Ultrathin Films and Nanostructures by Atomic Layer Deposition , 2012 .

[18]  W. Kessels,et al.  Nanopatterning by direct-write atomic layer deposition. , 2012, Nanoscale.

[19]  M. Ritala,et al.  Passivation of copper surfaces for selective-area ALD using a thiol self-assembled monolayer , 2012 .

[20]  M. Ritala,et al.  Microcontact Printed RuOx Film as an Activation Layer for Selective-Area Atomic Layer Deposition of Ruthenium , 2012 .

[21]  Se Stephen Potts,et al.  Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges , 2011 .

[22]  S. Bent,et al.  Area Selective Atomic Layer Deposition by Microcontact Printing with a Water-Soluble Polymer , 2010 .

[23]  H. Grampeix,et al.  CMOS compatible strategy based on selective atomic layer deposition of a hard mask for transferring block copolymer lithography patterns , 2010, Nanotechnology.

[24]  W. Kessels,et al.  Local deposition of high-purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition , 2010 .

[25]  Hyungjun Kim,et al.  Plasma-Enhanced Atomic Layer Deposition of Cobalt Using Cyclopentadienyl Isopropyl Acetamidinato-Cobalt as a Precursor , 2010 .

[26]  N. Dasgupta,et al.  Area-selective atomic layer deposition of lead sulfide: nanoscale patterning and DFT simulations. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[27]  S. Nelson,et al.  Oxide Electronics by Spatial Atomic Layer Deposition , 2009, Journal of Display Technology.

[28]  F. Prinz,et al.  Area-Selective Atomic Layer Deposition Using Self-Assembled Monolayer and Scanning Probe Lithography , 2009 .

[29]  Elina Färm,et al.  Selective-area atomic layer deposition with microcontact printed self-assembled octadecyltrichlorosilane monolayers as mask layers , 2008 .

[30]  Jane P. Chang,et al.  Generation of oxide nanopatterns by combining self-assembly of S-layer proteins and area-selective atomic layer deposition. , 2008, Journal of the American Chemical Society.

[31]  Elina Färm,et al.  Selective-Area Atomic Layer Deposition Using Poly(methyl methacrylate) Films as Mask Layers , 2008 .

[32]  Yueming Hua,et al.  Nanopatterning materials using area selective atomic layer deposition in conjunction with thermochemical surface modification via heated AFM cantilever probe lithography , 2008 .

[33]  S. Bent,et al.  Area-Selective Atomic Layer Deposition of Platinum on YSZ Substrates Using Microcontact Printed SAMs , 2007 .

[34]  S. Bent,et al.  Spatial control over atomic layer deposition using microcontact-printed resists , 2007 .

[35]  T. Jackson,et al.  2007 IEEE Device Research Conference: Tour de Force Multigate and Nanowire Metal Oxide Semiconductor Field-Effect Transistors and Their Application. , 2007, ACS nano.

[36]  S. Bent Heads or tails: which is more important in molecular self-assembly? , 2007, ACS nano.

[37]  Brian G. Willis,et al.  Nanometer spaced electrodes using selective area atomic layer deposition , 2007 .

[38]  Mary B Chan-Park,et al.  Design of experiment for optimization of plasma-polymerized octafluorocyclobutane coating on very high aspect ratio silicon molds. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[39]  Clifford L. Henderson,et al.  Area selective atomic layer deposition of titanium dioxide : Effect of precursor chemistry , 2006 .

[40]  G. Parsons,et al.  Selective area atomic layer deposition of rhodium and effective work function characterization in capacitor structures , 2006 .

[41]  M. Ritala,et al.  Self‐Assembled Octadecyltrimethoxysilane Monolayers Enabling Selective‐Area Atomic Layer Deposition of Iridium , 2006 .

[42]  Clifford L. Henderson,et al.  Area-Selective ALD of Titanium Dioxide Using Lithographically Defined Poly(methyl methacrylate) Films , 2006 .

[43]  Stacey F. Bent,et al.  Chemistry for Positive Pattern Transfer Using Area‐Selective Atomic Layer Deposition , 2006 .

[44]  Peidong Yang,et al.  Silicon Vertically Integrated Nanowire Field Effect Transistors , 2006 .

[45]  S. Bent,et al.  Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification , 2005 .

[46]  T. Gougousi,et al.  Microcontact patterning of ruthenium gate electrodes by selective area atomic layer deposition , 2005 .

[47]  M. Sung,et al.  Atomic Layer Deposition of Titanium Oxide on Self-Assembled-Monolayer-Coated Gold , 2004 .

[48]  M. Sung,et al.  Selective atomic layer deposition of titanium oxide on patterned self-assembled monolayers formed by microcontact printing. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[49]  M. Sung,et al.  A new patterning method using photocatalytic lithography and selective atomic layer deposition. , 2004, Journal of the American Chemical Society.

[50]  C. Marcus,et al.  Low-temperature atomic-layer-deposition lift-off method for microelectronic and nanoelectronic applications , 2003, cond-mat/0305711.

[51]  M. Barela,et al.  Fluorocarbon-based plasma etching of SiO2: Comparison of C4F6/Ar and C4F8/Ar discharges , 2002 .

[52]  Robert P. H. Chang,et al.  Selective-area atomic layer epitaxy growth of ZnO features on soft lithography-patterned substrates , 2001 .

[53]  G. Parsons,et al.  Inherent substrate-dependent growth initiation and selective-area atomic layer deposition of TiO2 using “water-free” metal-halide/metal alkoxide reactants , 2016 .

[54]  G. Parsons,et al.  Wafer‐Scale Selective‐Area Deposition of Nanoscale Metal Oxide Features Using Vapor Saturation into Patterned Poly(methyl methacrylate) Templates , 2016 .

[55]  R. Li,et al.  Extremely Stable Platinum Nanoparticles Encapsulated in a Zirconia Nanocage by Area‐Selective Atomic Layer Deposition for the Oxygen Reduction Reaction , 2015, Advanced materials.

[56]  Jiyoung Kim,et al.  Selective atomic layer deposition with electron-beam patterned self-assembled monolayers , 2012 .

[57]  Seunghun Hong,et al.  Atomic Layer Deposition of Ni Thin Films and Application to Area-Selective Deposition , 2011 .

[58]  Seunghun Hong,et al.  High Quality Area-Selective Atomic Layer Deposition Co Using Ammonia Gas as a Reactant , 2010 .