A New Queueing Model for QoS Analysis of IEEE 802.11 DCF with Finite Buffer and Load

Quality of Service (QoS) and queue management are important issues for IEEE 802.11 systems. However, existing 2-dimensional (2-D) Markov chain models of 802.11 systems are unable to capture the complete QoS performance and queueing behavior due to the lack of an adequate finite buffer model. We present a 3-dimensional (3-D) Markov chain that integrates the 802.11 system contention resolution and queueing processes into one model. The 3rd dimension, that models the queue length, allows us to accurately capture important QoS measures, delay and loss, plus throughput and queue length, for realistic 802.11 systems with finite buffer under finite load. We derive an efficient method for solving the steady state probabilities of the Markov chain. Our 3-D Markov chain is the first finite buffer model defined and solved for 802.11 systems. The solutions, validated by extensive simulations, capture the system dynamics over a wide range of traffic load, buffer capacity, and network size. Our 3-D model points to the existence of an effective maximum throughput and shows its relationship with buffer capacity. We demonstrate that our 3-D model can also be used in resource allocation to determine adequate buffer sizes under a particular QoS constraint.

[1]  Thierry Turletti,et al.  Performance analysis under finite load and improvements for multirate 802.11 , 2005, Comput. Commun..

[2]  Ansi Ieee,et al.  Part11 : Wireless LAN Media Access Control (MAC) and Physical Layer (PHY) Specifications , 1999 .

[3]  Biplab Sikdar,et al.  Modeling Queueing and Channel Access Delay in Unsaturated IEEE 802.11 Random Access MAC Based Wireless Networks , 2008, IEEE/ACM Transactions on Networking.

[4]  Pravin Varaiya,et al.  Throughput Analysis and Admission Control for IEEE 802.11a , 2005, Mob. Networks Appl..

[5]  Olav N. Østerbø,et al.  Analysis of the Total Delay of IEEE 802.11e EDCA and 802.11 DCF , 2006, 2006 IEEE International Conference on Communications.

[6]  D. Malone,et al.  Modeling the 802.11 Distributed Coordination Function in Nonsaturated Heterogeneous Conditions , 2007, IEEE/ACM Transactions on Networking.

[7]  Ieee . Wg Part 11 : Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification , 2003 .

[8]  Biplab Sikdar,et al.  A queueing model for finite load IEEE 802.11 random access MAC , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[9]  Ren Ping Liu,et al.  A 3-D Markov Chain Queueing Model of IEEE 802.11 DCF with Finite Buffer and Load , 2009, 2009 IEEE International Conference on Communications.

[10]  Biplab Sikdar,et al.  Queueing analysis and delay mitigation in IEEE 802.11 random access MAC based wireless networks , 2004, IEEE INFOCOM 2004.

[11]  Andrew T. Campbell,et al.  Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad Hoc Networks (SWAN) , 2002, IEEE Trans. Mob. Comput..