Thermal wave effects on heat transfer enhancement in nanofluids suspensions

The heat transfer enhancement revealed experimentally in nanofluids suspensions is being investigated theoretically at the macro-scale level aiming at explaining the possible mechanisms that lead to such impressive experimental results. In particular, while the possibility that thermal wave effects via hyperbolic heat conduction could have explain the excessively improved effective thermal conductivity of the suspension the comparison with experimental results rules-out this explanation.

[1]  J. J. Vadasz,et al.  Heat transfer enhancement in nano-fluids suspensions: Possible mechanisms and explanations , 2005 .

[2]  D. Venerus,et al.  Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering , 2006 .

[3]  Robert H. Davis The effective thermal conductivity of a composite material with spherical inclusions , 1986 .

[4]  Simon R. Phillpot,et al.  Effect of liquid layering at the liquid–solid interface on thermal transport , 2004 .

[5]  Roberto Piazza,et al.  Optical measurements of the thermal properties of nanofluids , 2006 .

[6]  Konstantinos Kakosimos,et al.  An Improved Application of the Transient Hot-Wire Technique for the Absolute Accurate Measurement of the Thermal Conductivity of Pyroceram 9606 up to 420 K , 2008 .

[7]  R. Perkins,et al.  Thermal Conductivity of Saturated Liquid Toluene by Use of Anodized Tantalum Hot Wires at High Temperatures , 2000, Journal of research of the National Institute of Standards and Technology.

[8]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[9]  Peter Vadasz,et al.  Heat Conduction in Nanofluid Suspensions , 2006 .

[10]  J. Kestin,et al.  The theory of the transient hot-wire method for measuring thermal conductivity , 1976 .

[11]  Marc J. Assael,et al.  Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double-Walled Nanotubes in the Presence of Two Different Dispersants , 2005 .

[12]  Marc J. Assael,et al.  Application of the Transient Hot-Wire Technique to the Measurement of the Thermal Conductivity of Solids , 2002 .

[13]  Chi-Chuan Wang,et al.  Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method , 2006 .

[14]  Marc J. Assael,et al.  Thermal Conductivity of Suspensions of Carbon Nanotubes in Water , 2004 .

[15]  W. Sabuga,et al.  Transient Hot Wire (THW) Method: Uncertainty Assessment , 2000 .

[16]  S. Phillpot,et al.  THERMAL TRANSPORT IN NANOFLUIDS1 , 2004 .

[17]  A. Nagashima,et al.  ABSOLUTE MEASUREMENT OF THE THERMAL CONDUCTIVITY OF ELECTRICALLY CONDUCTING LIQUIDS BY THE TRANSIENT HOT-WIRE METHOD (THERMAL CONDUCTIVITY OF AN AQUEOUS NaCl SOLUTION AT HIGH PRESSURE). , 1981 .

[18]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[19]  R. Prasher,et al.  Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids , 2006 .

[20]  Kenjiro Suzuki,et al.  Numerical study for enhancement of laminar flow mixing using multiple confined jets in a micro-can combustor , 2003 .

[21]  William A. Wakeham,et al.  A further contribution to the theory of the transient hot-wire technique for thermal conductivity measurements , 1978 .

[22]  D. Cahill,et al.  Thermal conductivity of nanoparticle suspensions , 2006 .

[23]  Marc J. Assael,et al.  A Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids up to 590 K , 2003 .

[24]  Shih-Yuan Lu,et al.  Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity , 1996 .

[25]  J. Kestin,et al.  Instrument to measure the thermal conductivity of gases , 1974 .

[26]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[27]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[28]  J. Brady,et al.  The effective conductivity of random suspensions of spherical particles , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[29]  D. Jeffrey,et al.  Conduction through a random suspension of spheres , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[31]  Roger T. Bonnecaze,et al.  A method for determining the effective conductivity of dispersions of particles , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[32]  Konstantinos Kakosimos,et al.  Thermal Conductivity of Reference Solid Materials , 2004 .

[33]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[34]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[35]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[36]  Marc J. Assael,et al.  Measurement of the Thermal Conductivity of Stainless Steel AISI 304L Up to 550 K , 2003 .

[37]  J. Kestin,et al.  The thermal conductivity of four monatomic gases as a function of density near room temperature , 1978 .

[38]  G. Ding,et al.  Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants , 2009 .

[39]  M. Louge,et al.  Heat transfer enhancement in suspensions of agitated solids. Part III: Thermophoretic transport of nanoparticles in the diffusion limit , 2008 .