Raman spectroscopy in gemmology as seen from a ‘jeweller’s’ point of view

Some gemstones (diamonds, coloured stones or assembled gems) found in the jewellery commerce, when observed by an optical microscopy or even at naked eye, exhibit unusual characteristics, such as inclusions incorporated at different depths. The investigation by confocal Raman micro-spectroscopy allowed identification of a blue sapphire and of nanocrystalline anatase in the same surface region of a cut and polished diamond. Moreover, hematite (α-Fe2O3) inclusions of rectangular shape, embedded at different depths, ranging from a few microns to some tens of microns beneath the gemstone surface, were identified in the coloured stones. Finally, a detailed study of an assembled gem evidenced spectral features that can be put in relation with its fabrication process. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  Guido Van Hooydonk,et al.  Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art , 2000 .

[2]  A. K. Ramdas,et al.  Raman Spectrum of Diamond , 1970 .

[3]  I. R. Lewis,et al.  Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line , 2001 .

[4]  R. S. Krishnan,et al.  Raman effect of corundum , 1967 .

[5]  D. Ajó,et al.  Micro-Raman investigations on inclusions of unusual habit in a commercial tanzanite gemstone , 2012 .

[6]  Alian Wang,et al.  Magnesite-bearing inclusion assemblage in natural diamond , 1996 .

[7]  William B. White,et al.  Characterization of diamond films by Raman spectroscopy , 1989 .

[8]  Robin J. H. Clark,et al.  Raman microscopy in archaeological science , 2004 .

[9]  Danilo Bersani,et al.  Applications of Raman spectroscopy to gemology , 2010, Analytical and bioanalytical chemistry.

[10]  A. Chopelas,et al.  Vibrational spectroscopy of end-member silicate garnets , 1991 .

[11]  D. Ajó,et al.  Aquamarine, Maxixe-Type Beryl, and Hydrothermal Synthetic Blue Beryl: Analysis and Identification , 2008 .

[12]  I. R. Beattie,et al.  The single-crystal Raman spectra of nearly opaque materials. Iron(III) oxide and chromium(III) oxide , 1970 .

[13]  Luc Moens,et al.  A decade of Raman spectroscopy in art and archaeology. , 2007, Chemical reviews.

[14]  T. C. Damen,et al.  Depolarization of Raman Scattering in Calcite , 1966 .

[15]  R. Nemanich,et al.  First- and second-order Raman scattering from finite-size crystals of graphite , 1979 .

[16]  Danilo Bersani,et al.  Micro-Raman spectroscopy as a routine tool for garnet analysis. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[17]  Ludovic Bellot-Gurlet,et al.  Raman spectroscopy in art and archaeology , 2006 .

[18]  P. P. Lottici,et al.  Phonon confinement effects in the Raman scattering by TiO2 nanocrystals , 1998 .

[19]  P. A. Vigato,et al.  Ciro Ferri’s frescoes: a study of painting materials and technique by SEM-EDS microscopy, X-ray diffraction, micro FT-IR and photoluminescence spectroscopy , 2004 .

[20]  M. Gemmi,et al.  Characterization of the New Malossi Hydrothermal Synthetic Emerald , 2005 .

[21]  P. H. Nixon,et al.  Corundum inclusions in diamonds—discriminatory criteria and a corundum compositional dataset , 2004 .

[22]  N. Vagenas,et al.  Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy , 2000 .

[23]  C. A. Worrell,et al.  Vibrational spectroscopic studies of some lead silicate glasses , 1978 .

[24]  J. Nelson La Microsonde Raman En Gemmologie , 1993, Mineralogical Magazine.

[25]  Stefanos Karampelas,et al.  Use of the Raman spectrometer in gemmological laboratories: review. , 2011, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[26]  B. A. Kolesov,et al.  Raman spectra of silicate garnets , 1998 .

[27]  H. Edwards,et al.  Fourier-transform Raman spectroscopic study of natural waxes and resins. I , 1996 .