Calculation of the gain coefficient in cryogenically cooled Yb : YAG disks at high heat generation rates

We have calculated the stored energy and gain coefficient in disk gain elements cooled to cryogenic temperatures. The problem has been solved with allowance for intense heat generation, amplified spontaneous emission and parasitic lasing, without averaging over any spatial coordinate. The numerical simulation results agree well with experimental data, in particular at high heat generation rates. Experimental data and theoretical analysis indicate that composite disk gain elements containing an undoped region can store considerably more energy due to suppression of amplified spontaneous emission and parasitic lasing.

[1]  P. Kryukov,et al.  Continuous-wave femtosecond lasers , 2013 .

[2]  Wei Wang,et al.  The influences of amplified spontaneous emission, crystal temperature and round-trip loss on scaling of CW thin-disk laser , 2012 .

[3]  E. Khazanov,et al.  Laser and thermal characteristics of Yb : YAG crystals in the 80 — 300 K temperature range , 2011 .

[4]  Theoretical and experimental research on cryogenic Yb:YAG regenerative amplifier , 2011 .

[5]  I. Mukhin,et al.  One kilohertz cryogenic disk laser with high average power , 2011, Optics + Optoelectronics.

[6]  T. Graf,et al.  Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime , 2009, IEEE Journal of Quantum Electronics.

[7]  Jochen Speiser Thin disk laser—Energy scaling , 2009 .

[8]  Dmitrii Kouznetsov ResearchLetter Storage of Energy in Disk-Shaped Laser Materials , 2008 .

[9]  Dmitrii Kouznetsov,et al.  Role of undoped cap in the scaling of thin-disk lasers , 2008 .

[10]  O. Casagrande,et al.  Time and Spectrum Resolved Model for Quasi-Three-Level Gain-Switched Lasers , 2007, IEEE Journal of Quantum Electronics.

[11]  D.C. Brown,et al.  The promise of cryogenic solid-state lasers , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  Shigeki Tokita,et al.  Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers , 2005 .

[13]  Tso Yee Fan,et al.  165-W cryogenically cooled Yb:YAG laser. , 2004, Optics letters.

[14]  Fuxi Gan,et al.  Dependence of the Yb 3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet , 2003 .

[15]  Tso Yee Fan,et al.  Cooled Yb:YAG for high-power solid state lasers , 1998, Defense, Security, and Sensing.

[16]  R. Konings,et al.  The Heat Capacity of Y3Al5O12 from 0 to 900 K. , 1998 .

[17]  R. Konings,et al.  The heat capacity of Y3Al5O12 from 0 to 900K , 1998 .

[18]  T. Fan Heat generation in Nd:YAG and Yb:YAG , 1993 .

[19]  K. K. Lee,et al.  High average power active-mirror amplifier. , 1986, Applied optics.

[20]  G. N. Vinokurov Maximum achievable population inversion in finite volumes , 1977 .