Influence of the Casimir force on the pull-in parameters of silicon based electrostatic torsional actuators

Abstract We perform a theoretical analysis focusing on the effect of the Casimir force (the result of the quantum fluctuations of the vacuum electromagnetic field) on the pull-in parameters of electrostatic torsional actuators (ETA) made from silicon. The Casimir force is calculated taking into account the frequency-dependent dielectric properties of silicon. We also address the role of surface roughness and temperature. Its is found that in spite of the weakening of this force with respect to the case of perfectly conducting parallel plates, the Casimir force considerably changes the pull-in parameters for devices with lateral dimensions in the range of a few tens of micrometers, actuator to substrate distance from 200 nm up to 1  μ m and low operating voltages compatible with, for example, CMOS technology.

[1]  Ya-Pu Zhao,et al.  Nonlinear behavior for nanoscale electrostatic actuators with Casimir force , 2005 .

[2]  O. Degani,et al.  Pull-in study of an electrostatic torsion microactuator , 1998 .

[3]  U. Mohideen,et al.  New developments in the Casimir effect , 2001, quant-ph/0106045.

[4]  B. Bhushan,et al.  Micro/nanotribological studies of polysilicon and SiC films for MEMS applications , 1998 .

[5]  G. L. Klimchitskaya,et al.  Corrections to the Casimir force between plates with stochastic surfaces , 1995 .

[6]  Robert Sattler,et al.  Modeling of an electrostatic torsional actuator: demonstrated with an RF MEMS switch , 2002 .

[7]  O. Degani,et al.  Design considerations of rectangular electrostatic torsion actuators based on new analytical pull-in expressions , 2002 .

[8]  G. J. Maclay,et al.  The anharmonic Casimir oscillator (ACO)-the Casimir effect in a model microelectromechanical system , 1995 .

[9]  Frederick J. Milford,et al.  Foundations of Electromagnetic Theory , 1961 .

[10]  W. Arnold,et al.  Erratum: Influence of optical absorption on the Van der Waals interaction between solids , 1979 .

[11]  Mehran Mehregany,et al.  Chemical‐Mechanical Polishing for Polysilicon Surface Micromachining , 1997 .

[12]  Edward P. Furlani,et al.  Analysis of grating light valves with partial surface electrodes , 1998 .

[13]  B. Bhushan,et al.  Static friction and surface roughness studies of surface micromachined electrostatic micromotors using an atomic force/friction force microscope , 2001 .

[14]  Improved precision measurement of the Casimir force , 1999, quant-ph/9906062.

[15]  Weng Hong Teh,et al.  Near-zero curvature fabrication of miniaturized micromechanical Ni switches using electron beam cross-linked PMMA , 2003 .

[16]  M. R. Douglass,et al.  A MEMS-based projection display , 1998, Proc. IEEE.

[17]  E. Lifshitz The theory of molecular attractive forces between solids , 1956 .

[18]  M. Kowarz,et al.  Conformal grating electromechanical system (GEMS) for high-speed digital light modulation , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[19]  Claudia Felser,et al.  Geometric, electronic, and magnetic structure of Co2FeSi: Curie temperature and magnetic moment measurements and calculations , 2005 .

[20]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[21]  Precision measurement of the Casimir force using gold surfaces , 2000, quant-ph/0005088.

[22]  G. Palasantzas,et al.  Phase maps of microelectromechanical switches in the presence of electrostatic and Casimir forces , 2005 .

[23]  Edward S. Kolesar,et al.  Implementation of micromirror arrays as optical binary switches and amplitude modulators , 1998 .

[24]  Florian Plötz,et al.  A low-voltage torsional actuator for application in RF-microswitches , 2001 .

[25]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[26]  M. Roukes,et al.  Metastability and the Casimir effect in micromechanical systems , 2000, cond-mat/0008096.

[27]  Yee Loy Lam,et al.  A STUDY OF THE STATIC CHARACTERISTICS OF A TORSIONAL MICROMIRROR , 2001 .

[28]  Jahja I. Trisnadi,et al.  Overview and applications of Grating-Light-Valve-based optical write engines for high-speed digital imaging , 2004, SPIE MOEMS-MEMS.

[29]  K. R. Farmer,et al.  An angle-based design approach for rectangular electrostatic torsion actuators , 2001 .

[30]  Y. Nemirovsky,et al.  Experimental verification of a design methodology for torsion actuators based on a rapid pull-in solver , 2004, Journal of Microelectromechanical Systems.

[31]  D. Welsch,et al.  Three-dimensional Casimir force between absorbing multilayer dielectrics , 2002, quant-ph/0212154.

[32]  Investigation of the Casimir force between metal and semiconductor test bodies , 2005, quant-ph/0505003.

[33]  F. Capasso,et al.  Quantum Mechanical Actuation of Microelectromechanical Systems by the Casimir Force , 2001, Science.

[34]  U. Mohideen,et al.  Precision Measurement of the Casimir Force from 0.1 to 0.9 μm , 1998, physics/9805038.

[35]  Bharat Bhushan Springer Handbook of Nanotechnology , 2007 .

[36]  Jian-Gang Guo,et al.  Influence of van der Waals and Casimir forces on electrostatic torsional actuators , 2004 .